

TABLE OF CONTENTS

	<u>Page</u>	
INTRODUCTION	3	
DATA SOURCES, PROCESSING, AND ACCURACY	3	
DATA		5
REFERENCES	8	
APPENDIX A: Afghanistan Mines and Mineral Occurrences	11	
TABLES		
Table 1. Provinces of Afghanistan	7	
Table 2. Commodity Codes	8	

INTRODUCTION

This inventory of more than 1000 mines and mineral occurrences in Afghanistan was compiled from published literature and the files of project members of the National Industrial Minerals project of the U.S. Geological Survey. The compiled data have been edited for consistency and most duplicates have been deleted. The data cover metals, industrial minerals, coal, and peat. Listings in the table represent several levels of information, including mines, mineral showings, deposits, and pegmatite fields.

DATA SOURCES, PROCESSING, AND ACCURACY

Data on more than 1000 Afghanistan deposits, mines, and occurrences were compiled from published literature and digital files of the project members of the National Industrial Minerals project of the U.S. Geological Survey (USGS). The data include information on metals, nonmetals, construction materials, coal, and peat. Three previous compilations of Afghanistan mineral resources were the dominant sources used for this effort. In 1995, the United Nation's Economic and Social Commission for Asia and the Pacific published a summary of the geology and mineral resources of Afghanistan as part of their *Atlas of Mineral Resources* series. This document included a summary table and text descriptions of the major mineral mines, deposits, and areas; however, there are numerous spelling and location inconsistencies between table listings and text descriptions. The text descriptions provide geologic and resource information about many of the sites.

A second source compilation for this report was *Gemstones of Afghanistan* (Bowersox and Chamberlin, 1995), published by Geoscience Press, Inc., of Tucson, Arizona. A table at the end of the book lists mineral occurrences by commodity, including metals and nonmetals, with latitude and longitude. The table contains substantial duplication as sites with multiple commodities are listed multiple times and there are numerous spelling inconsistencies. The text of this book is largely limited to descriptions of the gem districts of Afghanistan. Many of the individual mines listed in the text are not included in the summary table of this publication, although the major gem districts are in the table. Locations in Appendix A that were identified

only in Bowersox and Chamberlin (1995) during the compilation of this table are marked with an "*". The descriptions of the starred locations, consisting of a name, commodity, and location, are protected by copyright; the right to reproduce these locations was granted to the USGS by Geoscience Press. The conditions of reproduction stipulate that these rights are non-exclusive world rights and that notice of the title and authors be specified. The starred locations from Bowersox and Chamberlin (1995) are covered by the following copyright: "No part of this book may be reproduced by any mechanical, photographic, or electronic process, or in the form of a phonographic recording, nor may it be stored in a retrieval system, transmitted, or otherwise copied for public use, without written permission from the publisher."

The most complete compilation of Afghanistan's mineral resources is *Mineral Resources of Afghanistan* by Abdullah and others (1977). With few exceptions, the data listed in the ESCAP (1995) publication and Bowersox and Chamberlin (1995) table of mineral resources appear to be excerpted from this earlier compilation; the spelling inconsistencies and typographical errors of Abdullah and others are frequently duplicated in the later compilations. Both of the later compilations are missing much of the geologic detail contained in the 1977 compilation, but do contain some "new" information not found in Abdullah and others. We should also note at this point that Abdullah and others (1977) is also referenced as Shareq and others (1977). This confusion arises from the publication having two title pages. One title page begins the list of authors as "Abdullah Shareq, V.M. Chmyriov, ..."; the other title page begins the list of authors as "Sh. Abdullah, V.M. Chmyriov, ...". We have chosen to use "Abdullah" as the last name because several citations in the mineral descriptions cite "Abdullah" and none cite "Shareq". Also, in the reference list of the 1977 publication, there is an author listed as "Abdullah, S.", but there is no "Shareq".

Additional geologic and commodity information came from USGS files and about a dozen other published sources. For the most part, all data were recorded as reported in the references unless there were inconsistencies that could be reconciled from the available data. Where information reported from two or more sources were in conflict, the authors utilized the information from Abdullah and others (1977) and noted the inconsistencies. The data were checked for duplicates using names, locations, and commodity. Historic province names were replaced with current province names using latitude and longitude information using a paper map. No attempt was made to identify further errors.

DATA

The mines and mineral occurrences of Afghanistan are listed in a table as Appendix A of this publication. The table is divided into 3 parts; Pegmatite Fields, Named Sites & Deposits, and Sites and Deposits Without Names. The latter 2 categories include deposits, active and inactive mines of a variety of scales, prospects, and showings. The data fields for Appendix A include:

Locality/Deposit Name

Synonyms and Other Names or Spellings

Deposit or District Name

Province

Latitude

Longitude

Commodity(s)

Type of Deposit

Status

Host Rock Age

Host Rock

Significant Minerals or Materials

Deposit Size and (or) Grade

Comments

References

Decimal Latitude

Decimal Longitude

The Locality/Deposit Name field contains the name of the mine, deposit, field, area, or occurrence being described. Synonyms and Other Names or Spellings contains alternative names or spellings for the site. For a deposit or area, this field might also

include any specific mine or occurrence names that are known, i.e. "includes Northern and XXX mines". The Deposit or District Name field contains the name of any larger deposit, field, or district to which the site belongs. The Afghanistan Province in which the site lies is the next field. Federal Information Processing Standards (FIPS) spellings were used in Appendix A (National Institute of Standards and Technology, 1995). Table 1 contains a list of all the Provinces in Afghanistan plus alternative spellings and historic names known to the authors.

Latitude and longitude are listed in degrees, minutes, and seconds. Large fields or deposits may have a range specified in the Latitude or Longitude fields, i.e. "34-00N to 34-10N". In other cases, a deposit may have 2 orebodies with differing locations. In this case, the multiple latitudes and longitudes are separated by a semi-colon, i.e. "34-00N; 34-10N."

The Commodity Field lists the commodities known to occur at each site. A list of commodity abbreviations may be found in table 2. The following field, Type of Deposit, contains a deposit type or style of mineralization. The Status field contains information on whether the site has produced and when or if it is a mineral occurrence or showing. Host Rock Age and Host Rock contain appropriate descriptions of host rocks and other significant rock units, such as nearby igneous rocks that are related to the mineralization. The main minerals or materials are listed under Significant Minerals or Materials and any deposit size or grade information is listed in the following field. The four remaining fields in Appendix A are a Comments field for any additional information, References, and Decimal Latitudes-Longitudes.

Readers and users of the data should be aware that English spelling of the place names is highly variable within the source materials; many are English translations of Russian versions of Afghani names. In addition, the use of singular and plurals in the geologic descriptions is erratic. If the source(s) specified a number of veins or orebodies, that number was included in Appendix A of this publication. In many other cases, it was commonly unclear if there was one or more mineralized areas or bodies. Lastly, there is additional data in Abdullah and others (1977), including the locations of mineral haloes, that are not included in this publication.

The data in Appendix A may be obtained in digital format in the following ways:

1. Download the digital files from the USGS public access World Wide Web site on the internet: http://geopubs.wr.usgs.gov/open-file/of02-xxx/

Table 1. Provinces of	of Afghanistan.
Province	Alternate spellings and names, including historical names
Badakhshan	Badahsan
Badghis	Badgis
Baghlan	Baglan
Balkh	Balh
Bamian	Bamyan, Bamiyan
Farah	Fahrah
Faryab	Fariab
Ghazni	Gazni
Ghowr	Ghor, Gawr, Ghawr, Gor
Helmand	Hilmend
Herat	
Jowzjan	Jawzjan, Jozjan, Juzjan
Kabol	Kabul
Kandahar	Qandahar
Kapisa	Kapesa, Kapissa
Konar	Kunar, Konarh, Konarha, Nuristan
Kondoz	Kunduz, Konduz, Qunduz, Qonduz
Laghman	Lagman, Nuristan
Lowgar	Lawgar, Lawghar, Logar, Loghar, Lowghar
Nangarhar	Ningarhar
Nimruz	Chakhansur, Neemroze, Nimroz, Nimroze
Oruzgan	Uruzgan, Oruzghan, Uruzghan
Paktia	Paktiya
Paktika	
Parvan	Parwan
Samangan	Samanghan
Sar-e Pol	Sar-e Pul, Sari Pol, Sar-i Pol
Takhar	Tahar
Vardak	Warkak, Wardak, Wardag, Wardagh, Maydan
Zabol	Zabul

or

2. Anonymous FTP from geopubs.wr.usgs.gov, in the directory

pub/open-file/of02-xxx/

The data are available in Excel 98 (of02xxx.xls) format.

Table 2. Commodity Codes. Standard chemical symbols, abbreviations, and formulas are not included in this table.

Abbreviation	Commodity	Abbreviation	Commodity
Arag	aragonite	Hal	halite
Asb	asbestos	Lst	limestone
Ba	barite	Mbl	marble
Bri	brine	Mg	magnesium, magnesite
Ca	calcite	Mica	mica, muscovite
Cly	clay	NaCO	Sodium carbonate
COA	coal	Oli	olivine
COLL	collectibles	Peat	peat
Dol	dolomite	Qtz	quartz
Epi	epidote	REE	rare earths
F	fluorite	Serp	serpentine
Fld	feldspar	Si	silica
Gar	garnet	SDG	sand and gravel
GEM	gemstones	Shl	shale
GRF	graphite	Tle	talc
Gyp	gypsum		

REFERENCES

Abdullah, Sh., Chmyriov, V.M., Stazhilo-Alekseev, K.F., Dronov, V.I., Gannan, P.J., Rossovskiy, L.N., Kafarskiy, A.Kh., and Malyarov, E.P., 1977, Mineral resources of Afghanistan (2nd edition): Kabul, Afghanistan, Republic of Afghanistan Geological and Mineral Survey, 419 p.

Afzali, H., 1981, Les ressources d'hydrocarbures, de métaux e de substances utiles de l'Afghanistan: aperçu général: Chronique de la Recherche Minière, no. 460, p. 29-51.

Alkaloids, V.Yu., Atakishiyev, Z.M., and Azimi, N.A., 1978, Geology and mineral resources of the early Quternary Khanneshin carbonatite volcano (southern Afghanistan): International Geology Review, v. 20, no. 3, p. 281-285.

- Bogatskiy, V.V., Rossovskiy, L.N., and Konovalenko, S.I., 1978, System of structural and morphologic types of zones of rare-metal pegmatite veins and the potential for predicting deposits: Transactions (Doklady) of the U.S.S.R. Academy of Sciences: Earth Science Sections, v. 240, no. 1-6, p. 78-80.
- Bowersox, G.W., and Chamberlin, B.E., 1995, Gemstones of Afghanistan: Tucson, Arizona, Geoscience Press, 220 p.
- Chmyriov, V.M., Stazhilo-Alekseev, K.F., Mirzad, S.H., Dronov, V.I., Kazikhani, A.R., Salah, A.S., and Teleshev, G.I., 1973, Mineral resources of Afghanistan, in Geology and Mineral Resources of Afghanistan: Kabul, Afghanistan Department of Geological Survey, p. 44-85.
- Economic and Social Commission for Asia and the Pacific (ESCAP), 1995, Geology and mineral resources of Afghanistan: New York, United Nations, Atlas of Mineral Resources of the ESCAP Region, v. 12, 85 p.
- Jankovic, S., 1984, Strata-bound low temperature Pb-Zn-Ba+ or -F deposits in carbonate rocks of western Asia; geotectonic setting and main metallogenic features, *in* Wauschkuhn, A., Kluth, C., and Zimmermann, R.A., eds., Syngenesis and epigenesis in the formation of mineral deposits: Heidelberg, Germany, Springer-Verlag, p. 373-390.
- Jones, Bob, 1991, The new classic locations; Afghanistan: Rock & Gem, v. 21, no. 7, p. 40-44.
- Kazmi, A.H., and Snee, L.W., 1989, Geology of world emerald deposits: A brief review, *in* Kazmi, A.H., and Snee, L.W., eds., Emeralds of Pakistan; geology, gemology and genesis: New York, Van Nostrand Reinhold Company and Geological Survey of Pakistan, p. 165-228.
- Kuo, C.S., 1992, The mineral industry of Afghanistan, in Mineral Industries of Asia and the Pacific, 1990: U.S. Bureau of Mines Minerals Yearbook-1990, v. III, p. 8-9.
- Lawrence, R.D., Kazmi, A.H., and Snee, L.W., Geological setting of the emerald deposits, *in* Kazmi, A.H., and Snee, L.W., eds., Emeralds of Pakistan; geology, gemology and genesis: New York, Van Nostrand Reinhold Company and Geological Survey of Pakistan, p. 13-38.
- Rossovskii, L.N. (Rossovskiy, L.N.), Makagon, V.M., and Kuz'mina, T.M., 1978, Characteristics of the formation of a kunzite deposit in Afghanistan: Soviet Geology and Geophysics, v. 19, no. 11, p. 82-87.

- Rossovskiy, L.N., 1977, First find of pollucite and its crystals in Afghanistan: Transactions (Doklady) of the U.S.S.R. Academy of Sciences: Earth Science Sections, v. 236, no. 1-6, p. 157-160.
- Rossovskiy, L.N., Chmyrev, V.M., and Salakh, A.S., 1976, Genetic relationship of aphanitic spodumene dikes to lithium-pegmatite veins: Transactions (Doklady) of the U.S.S.R. Academy of Sciences: Earth Science Sections, v. 226, no. 1-6, p. 170-172.
- Rossovskiy, L.N., Chmyrev, V.M., and Salakh, A.S., 1976b, Vertical range and zoning of spodumene pegmatite deposits in Afghanistan: Transactions (Doklady) of the U.S.S.R. Academy of Sciences: Earth Science Sections, v., 227, no. 1-6, p. 85-87.
- Rossovskiy, L.N., and Shmakin, B.M., 1978, Unique example of vertical geochemical zoning in pegmatites of the Hindu Kush, Afghanistan: Transactions (Doklady) of the U.S.S.R. Academy of Sciences: Earth Science Sections, v. 240, no. 1-6, p. 204-206.
- Shareq and others, 1977 [See Abdullah and others, 1977]
- Smith, G.I., 1975, Potash and other evaporite resources of Afghanistan: U.S. Geological Survey Open-File Report 75-89, 63 p.
- Wyart, Jean, Bariand, Pierre, and Filippi, Jean, 1981, Lapis-lazuli from Sar-e-Sang, Badakhshan, Afghanistan: Gems and Gemology, v. 17, no. 4, p. 184-190.

APPENDIX A

Afghanistan Mines and Mineral Occurrences

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
	Geoscience Press, Inc., o Geoscience Press. The c	of Tucson, Arizona. conditions of repro mberlin (1995) are	The descriptions duction stipulate t covered by the fo	of the starred loc hat these rights a lowing copyright:	ations are protect re non-exclusive "No part of this	cted by copyright; the world rights and that book may be reprode	e right to reproduce notice of the title a uced by any mecha	these locations was g and authors are specifi nical, photographic, o	ed. The starred locations relectronic process, or in		
PEGMATITE FIELDS											
Alinghar Pegmatite Field		Alinghar Pegmatite Field	Laghman	34-52-41N, 35- 01-05N	70-16-48E, 70- 27-51E	Li Cs Rb	pegmatite	Field	Proterozoic and Late Triassic; Oligocene	roof pendants; granite	spodumene, lepidolite, petalite, amblygonite, pollucite, albite
Besud Field		Besud Field	Vardak	34-23N	67-50E	Ta Nb Sn	pegmatite	Field	Oligocene; Proterozoic	granite; rocks	
Chawki Pegmatite Field		Chawki Pegmatite Field	Nangarhar	34-40-20N; 34- 49-10N	70-46-56E; 70- 52-50E	Be Nb Ta	pegmatite	Field	Proterozoic; Early Cretaceous; Oligocene	schist, gneiss, marble, quartzite; diorite; granite	beryl, schorl, muscovite, columbite-tantalite, cassiterite
Dara-i-Daram Pegmatite Field	Daram-Daram, Daram-i- Daram	Dara-i-Daram Pegmatite Field	Kapisa	34-53N; 34- 48N	69-45E; 69- 47E	Nb Ta Sn	pegmatite	Field	Proterozoic; Late Triassic; Oligocene	gneiss, migmatite, schist; schist; granite	columbite-tantalite, cassiterite, microcline, albite
Darra-i-Pech Field	Dara-i-Pech	Darra-i-Pech Field	Nangarhar	34-55-45N	70-43-55E	Be Nb Ta Li Mica		Intermittent Small producer	Oligocene; Early Cretaceous	granite; quartz diorite, diorite, gabbro	spodumene, beryl, columbite- tantalite, quartz, albite, microcline, pollucite, muscovite, biotite
Darrahe-Nur Pegmatite		Darrahe-Nur		34-37-00N; 34-	70-45-00E; 70-			Intermittent Small	Oligocene; Early		beryl, spodumene, microcline,
Field	Dara-i-Nur	Pegmatite Field	Laghman	39-14N	16-17E	Be Li Nb Ta Sn	pegmatite	producer	Cretaceous	granite; diorite	schorl, biotite, muscovite, albite
Eshkashim Pegmatite Field	Ishkashem	Eshkashim Pegmatite Field	Badakhshan	36-27-19N	71-36-23E	Li Ta Sn Be Nb	pegmatite	Field	Oligocene; Late Paleozoic-Mesozoic	granite; phyllite, slate	spodumene, microcline, cleavelandite, albite, beryl, muscovite
Kantiway Pegmatite Field	Kantiwa	Kantiway Pegmatite Field	Nangarhar	35-26-10N	70-46-20E	GEM Li Qtz	pegmatite	Intermittent Small producer (1995)	Oligocene; Proterozoic	granite; gneiss, schist, quartzite	kunzite, spodumene, tourmaline, quartz, albite, cleavelandite, muscovite, tourmaline, cassiterite
Kokcha Field		Kokcha Field	Badakhshan	36-36-35N	70-53-15E	Li Ta Nb Sn Cs Rb	pegmatite	Field	Oligocene; Archean; Paleozoic-Mesozoic	granitic rocks; gneiss, schist; sediments	cleavelandite, albite, quartz, microcline, columbite-tantalite
Kurghal Pegmatite Field	Korghal	Kurghal Pegmatite Field	Laghman	35-04-06N	70-18-29E	Cs Rb Li Ta Nb GEM	pegmatite	Field	Oligocene; Proterozoic	granite; schist, gneiss	pollucite, tantalite, lepidolite, tourmaline, microcline, schorl, muscovite, oligoclase, beryl
Marid Pegmatite Field		Marid Pegmatite Field	Nangarhar	35-14N	71-20E	Li Be	pegmatite	Field	Proterozoic; Early Cretaceous	gneiss, schist, marble, quartzite; diorite	spodumene, microcline, albite, beryl
Mundel Pegmatite Field		Mundel Pegmatite Field	Laghman	35-17-28N	70-09-57E	Ве	pegmatite	Field	Oligocene; Proterozoic; Early Cretaceous	micaceous granite; gneiss, schist, granite; diorite	beryl, microcline
Nilaw-Kolum Field		Nilaw-Kolum Field	Laghman	35-12-30N	70-21-14E	Be Ta Nb GEM Li Cs Rb	pegmatite	Field	Early Cretaceous; Proterozoic; Oligocene	diorite; schist, gneiss; granite	beryl, kunzite, spodumene, schorl, lepidolite, tourmaline, kunzite, pollucite
Pachaghan Pegmatite Field		Pachaghan Pegmatite Field	Kapisa	35-02-03N	69-43-10E	Be Mica	pegmatite	Intermittent Small producer	Proterozoic; Early Cretaceous	gneiss, granitic rocks; gabbro-norite	beryl, microcline, muscovite, biotite, albite
Pachighram Pegmatite Field		Pachighram Pegmatite Field	Nangarhar	35-31-40N; 35- 52-00E	71-00-00E; 71- 18-00E	Li Be Sn Nb	pegmatite	Field	Late Carboniferous-Early Permian; Oligocene	schist, gneiss; granite	spodumene, microcline, muscovite, albite, schorl

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
PEGMATITE FIELDS					
			Chmyriov and others, 1973; ESCAP, 1995; Bowersox and		
			Chamberlin, 1995; Bogatskiy and		
Alinghar Pegmatite		Latitude-long is for approximate center of the	others, 1978; Abdullah and others,		
Field		field.	1977	34.878	70.280
			Abdullah and others, 1977;		
Besud Field		I attanda language for the another and	Bowersox and Chamberlin, 1995	34.383	67.833
		Latitude-longs are for the southwest and northeast parts of the field. Dikes are 20-200	ESCAP, 1995; Abdullah and others, 1977; Bowersox and	34.672;	70.782;
Chawki Pegmatite Field		m long and 1-10 m thick.	Chamberlin, 1995	34.819	70.7827
onawar ogmanio mola		in long and 1 to in allow	ESCAP, 1995; Abdullah and	01.017	70.001
Dara-i-Daram		Latitude-long for approximate center of the	others, 1977; Bowersox and	34.883;	69.750;
Pegmatite Field		field.	Chamberlin, 1995	34.800	69.783
			ESCAP, 1995; Rossovskiy, 1977;		
		Latitude-long for approximate center of the	Abdullah and others, 1977;		
Darra-i-Pech Field		field.	Bowersox and Chamberlin, 1995	34.929	70.732
			ESCAP, 1995; Abdullah and		
Darrahe-Nur Pegmatite		Latitude-longs are for the northeast and	others, 1977; Bowersox and	34.617;	70.750;
Field		southwest parts of the field.	Chamberlin, 1995	34.654	70.271
Eshkashim Pegmatite			ESCAP, 1995; Abdullah and others, 1977; Bowersox and		
Field		Dikes are 15-1000 m long and 1-20 m thick.	Chamberlin, 1995	36.455	71.606
11014		Emes are to roce in long and 1 20 in amon.	Chambering 1770	00.100	71.000
			ESCAP, 1995; Abdullah and		
Kantiway Pegmatite			others, 1977; Bowersox and		
Field		Field is 10 x 20 km.	Chamberlin, 1995 ESCAP, 1995; Abdullah and	35.436	70.772
		Dikes are tens of meters long and 1.5-3.0 m	others, 1977; Bowersox and		
Kokcha Field		thick.	Chamberlin, 1995	36.610	70.888
		Latitude-long for approximate center of the	ESCAP, 1995; Abdullah and		
		field. Dikes are tens to hundreds of meters	others, 1977; Bowersox and		
Kurghal Pegmatite Field		long and 1-50 m thick.	Chamberlin, 1995 ESCAP, 1995; Abdullah and	35.068	70.306
		Latitude-long for approximate center of the	others, 1977; Bowersox and		
Marid Pegmatite Field		field.	Chamberlin, 1995	35.233	71.333
		Latitude-long for approximate center of the			,,,,,
		field. At contact of granite and schist.	ESCAP, 1995; Abdullah and		
		Pegmatites are tens to hundreds of meters	others, 1977; Bowersox and	05.004	70.4//
Mundel Pegmatite Field		long and 0.3-5.0 m thick. Latitude-long for approximate center of the	Chamberlin, 1995	35.291	70.166
		field. Pegmatites in schist are tens to			
		hundreds of meters long and 1-5 m thick;	ESCAP, 1995; Rossovskiy, 1977;		
		those in diorite are >2000 m long and 1-20 m	Abdullah and others, 1977;		
Nilaw-Kolum Field		thick.	Bowersox and Chamberlin, 1995	35.208	70.354
Dooboahon D		Over 200 permetite dike- About 400 / f	ESCAP, 1995; Abdullah and		
Pachaghan Pegmatite Field		Over 300 pegmatite dikes. About 400 t of mica have been mined.	others, 1977; Bowersox and Chamberlin, 1995	35.034	69.719
i iciu		mica have been mineu.	Chariberin, 1770	33.034	07.719
	0.3-5.0% Li oxide; 0.001-	Latitude-long for approximate center of area.	ESCAP, 1995; Abdullah and		
		Approximately 100 dikes 10-1000 m long and	others, 1977; Bowersox and	35.528;	71.000;
Field	0.040% Sn	1-20 m thick.	Chamberlin, 1995	35.867	71.300

	l		1	1	1		1		1	1	I
Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
								mines are intermittent producers; Smaal- Scale mining both			
Panjsher Pegmatite		Panjsher		35-20N; 35-	69-20E; 69-			Surface and underground (most less than 27 m deep)	Proterozoic; Ordovician;	gneiss; schist; limestone; gabbro, diorite, quartz porphyry dikes,	emerald, tantalite-columbite, cassiterite, spodumene, schorl, garnet, guartz, ankerite, pyrite,
Field		Pegmatite Field	Parvan	15N	12E	Ta Nb Sn	pegmatite, veins	in dist.	Silurian-Devonian;	carbonate skarn	phlogopite, albite, tourmaline spodumene, microcline,
Parun Field	Parown	Parun Field	Nangarhar	34-54-34N; 35- 40-18N	70-52-15E; 71- 14-40E	Li Ta Nb Sn Cs Rb	pegmatite	Field	Oligocene; Proterozoic	granite; schist, gneiss	muscovite, albite, tantalite, columbite, cassiterite, schorl, garnet, beryl
Shahidan Pegmatite	r drown	Shahidan					pogmutito		Proterozoic; Carboniferous-Early	metamorphics, schist;	spodumene, beryl, microcline,
Field		Pegmatite Field	Laghman	34-31-30N	69-54-15E	Li Be	pegmatite	Field	Permian; Oligocene	sediments; granite	muscovite, albite
Shamakat Pegmatite Field		Shamakat Pegmatite Field	Laghman	34-41-40N	70-04-20E	Li Sn Ta Be Cs	neamatite	Field	Proterozoic; Oligocene	schist, gneiss; granite	spodumene, petalite, albite, pollucite, tourmaline
		Shewa Pegmatite					pegmatite		Archean; Late Triassic- Middle Jurassic;	metamorphics; sediments; granitic	
Shewa Pegmatite Field		Field	Badakhshan	37-22-07N	70-24-43E	Ta Sn	pegmatite	Field	Oligocene	plugs	cassiterite, microcline pollucite, lepidolite, spodumene, albite, tourmaline, cleavelandite,
Surkh-Rod Pegmatite Field		Surkh-Rod Pegmatite Field	Nangarhar	34-26-05N	70-15-23E	Cs Rb Li	pegmatite	Field	Silurian-Devonian; Oligocene	schist, limestone; granite	rubellite, cassiterite, microcline, schorl, garnet, biotite, muscovite
Taghawlor Field		Taghawlor Field	Oruzgan	33-42-30N to 33-47-00N	66-19-30E to 66-29-00E	Li Sn Ta Be	pegmatite	Field	Oligocene; Proterozoic	granite; phyllite, slate	spodumene, columbite, tantalite, cassiterite, beryl, microcline, albite, schorl, muscovite
Talbuzanak Field		Talbuzanak Field	Radakhahan	37-12-06N	70.22.245	Li Be Ta Nb	nagmatita	Field	Proterozoic; Early	schist, amphibolite;	spodumene, beryl, columbite- tantalite, microcline, muscovite
raibuzanak Field		Taibuzanak Field	Badaknsnan	37-12-06N	70-33-36E	LI Be Ta ND	pegmatite	Field	Triassic	granite, granodiorite	tantailte, microcline, muscovite
NAMED SITES & DEPOSITS											
551			Ghazni	33-01-30N	67-03-00E	Zn Bi	skarn	Occurrence	Late Devonian; Oligocene	calcareous terrigenous rocks; granite	pyrite, magnetite
7757			Kandahar	32-15-17N	65-59-02E	Pb Zn Ag Cu	skarn	Past producer (1977)	Late Triassic; Oligocene	limestone; granite	galena, chalcopyrite, pyrrhotite
9390 Ab-i-Panja*			Kandahar Badakhshan	32-05N 37-58N	65-55E 70-24E	Pb Zn Cu Au	skarn	Occurrence	Silurian; Oligocene	limestone; granite	
Ab-i-Panja Area*			Badakhshan	37-15N	71-27E	GEM		Active producer			ruby, sapphire
Abdul-Qala			Ghazni	32-51-40N	67-49-20E	SDG	serpentine-hosted	(1977)	Quaternary?	alluvium	sand and gravel
Abparan			Lowgar	34-11-55N	69-15-15E	Asb	asbestos	Occurrence	Eocene	serpentinized peridotite marble; andesite	asbestos
Achin			Nangarhar	34-03N	70-43E	Mg Tlc		Occurrence	Proterozoic;	porphyry, diabase porphyry dikes	magnesite, talc

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
			I		
		-+!h -	ESCAP, 1995; Abdullah and others, 1977; Bowersox and		
Panjsher Pegmatite		Latitude-long for approximate center of area. Quartz-ankerite veins. Panjshir Valley emerald		35.333:	69.333:
Field		mines in an area 8 by 40 km.	1985: Bowersox and others, 1991	35.250	69,200
			,		
			ESCAP, 1995; Abdullah and		
			others, 1977; Bowersox and		
Parun Field		Latitude-long for approximate center of area. Latitude-long for approximate center of the	Chamberlin, 1995 ESCAP, 1995; Abdullah and	34.909	70.871
Shahidan Pegmatite		field. Dikes are hundreds of meters long and 1-			
Field		15 m thick.	Chamberlin, 1995	34.525	69.904
	Speculative 0.1585 Mt		ESCAP, 1995; Rossovskiy, 1977;		
	Li₂O @ 1.76% Li₂O to		Abdullah and others, 1977;		
Shamakat Pegmatite	150 m depth (Dike No.	Latitude-long for approximate center of the	Rossovskiy and others, 1976;		
Field	1, 1995)	field.	Bowersox and Chamberlin, 1995 ESCAP, 1995; Abdullah and	34.694	70.072
		Latitude-long for approximate center of the	others, 1977: Bowersox and		
Shewa Pegmatite Field		field.	Chamberlin, 1995	37.369	70.412
			Chmyriov and others, 1973;		
			Bowersox and Chamberlin, 1995;		
Surkh-Rod Pegmatite		Latitude-long for approximate center of the	ESCAP, 1995; Abdullah and		/
Field	105 Mt @ 1.4% Li ₂ O	field. Pegmatite zone is 15 km long.	others, 1977	34.435	70.256
	(1977); 26 Mt @				
	0.016% TaO _{5 (1977)} ; 24 Mt				
	@ 0.075% Sn (1977);				
	Speculative 1.464 Mt				
	Li ₂ O @ 0.08-2.80% Li ₂ O,				
	4200 t TaO ₅ @ 0.008-				
	0.025% TaO₅, 17,600 t				
	Sn @ 0.01-0.14% Sn		Abdullah and others, 1977, p.	33.708 to	
Taghawlor Field	(1995)	300 pegmatite dikes in this field.	219; ESCAP, 1995 Bowersox and Chamberlin, 1995;	33. 783	66.483
			Bowersox, 1985; Bowersox and		
Talbuzanak Field		Dikes 40-70 m long and 3-5 m thick.	others, 1991	37.202	70.56
NAMED SITES &					1
DEPOSITS					
EE1		Mineralized diopside-tremolite skarns 80-100	Abdullah and others, 1977;	22.005	(7.050
551		m long and 1-2 m thick. Major part of this occurrence has been mined	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	33.025	67.050
7757		out.	Bowersox and Chamberlin, 1995	32.255	65.984
			Abdullah and others, 1977;		
9390		Skarn zone is 2000 m long and 25-30 m thick.	Bowersox and Chamberlin, 1995	32.083	
Ab-i-Panja*			Bowersox and Chamberlin, 1995	37.967	
Ab-i-Panja Area*		Gravel deposits up to 4 m thick occur over an	Bowersox and Chamberlin, 1995	37.250	71.450
		area of 3 km² in alluvium and alluvial fans of	Abdullah and others, 1977;		
Abdul-Qala		the Tarnak Valley. Used for road ballast.	Bowersox and Chamberlin, 1995	32.861	67.822
		Asbestos-bearing zone 300 m long and 5-20 m	Abdullah and others, 1977;	32.001	37.022
Abparan		wide.	Bowersox and Chamberlin, 1995	34.199	69.254
	Speculative 31.2 Mt @		Abdullah and others, 1977;	1	
Achin	34% MgO (1976); 1.7	Alternate longitude from ECCAD :- 70 455	ESCAP, 1995; Bowersox and	24.050	70 717
Achin	Mt @ 73% talc	Alternate longitude from ESCAP is 70-45E.	Chamberlin, 1995	34.050	70.717

									_		
Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
											wolframite, cassiterite, scheelite,
								_			chalcopyrite, molybdenite, bornite
Adamkhel Aera*	Adamkel		Zabol	32-46-05N 34-03N	66-57-00E 69-38E	Sn, W Mica	hydrothermal	Occurrence Occurrence	Oligocene	granodiorite	pyrite, hematite
Acia			Lowgar	34-03N	09-36E	IVIICa		Occurrence			
Afdzalkhel			Paktia	33-11-05N	69-32-22E	Asb		Occurrence		serpentinized peridotite	asbestos
								Active producer			
Aghonan			Ghazni	32-44-15N	67-37-40E	SDG		(1977)	Quaternary?	alluvium	sand and gravel
											magnetite, hematite, chalcopyrite
									Miocene; Late Triassic-	skarn, granite porphyry;	covellite, chalcocite, cuprite, malachite, azurite, molybdenite,
Ahankashan			Badghis	34-39N	64-23E	Au Cu Pb Zn Mo	skarn	Occurrence	Early Cretaceous	sedimentary rocks	native gold
				9.79.11					Jany Managara	, and the same	January State Stat
Ahazde-Kol			Badakhshan	37-23-24N	73-30-00E	Peat	sedimentary	Occurrence	Quaternary		peat
Akarkhel			Kabol	34-17-30N	69-17-00E	Cu	unknown	Occurrence	Vendian-Cambrian	greenstone slate	chalcopyrite, chalcocite, malachite
									Late Permian; Devonian;	limestone, marble;	
									Late Cretaceous -	siliceous sandstone,	
Alaghzar			Ghazni	32-57-10N	67-32-55E	Cu Au	skarn	Occurrence	Paleocene	conglomerate; diorite	chalcopyrite, hematite, gold
Alaghzar			Ghazni	32-59-25N	67-45-25E	Mbl	metasedimentary	Active Small producer (1977)	Proterozoic	marble	marble
							metassannentary			marbio	
Alamkan			Paktia	33-19-05N	69-40-24E	Qtz		Occurrence	Eocene		quartz, rock crystal
Alburs*			Badakhshan	36-20N	71-15E	GEM				siliceous-opaline,	opal
										tripolite, alum-gypsum,	
										and siliceous-carbonated	i
Alburs	Alburz		Balkh	36-35N	66-35E	S	hydrothermal?	D	Late Cretaceous	rocks	native sulfur
Alghoi			Kabol	34-38N	69-09E	Mbl	metasedimentary	Potential producer	Proterozoic	marble	marble
			Itaboi					Processing Processing			
A I : I - I :				22 F1 F0N	/F 12 20F	11-	dia a considerata d	0	Faste Casta as a sec		almost as
Alibali			Oruzgan	33-51-50N	65-13-20E	Hg	disseminated	Occurrence	Early Cretaceous	sandstone, siltstone	cinnabar
Alibali I		Parun Field -	Oruzgan	33-51-26N	65-13-52E	Hg	disseminated	Occurrence	Early Cretaceous		cinnabar spodumene, beryl, albite,
Alma	Alama	Waigal Zone	Nangarhar	35-30-08N	71-10-52E	Li Be	pegmatite	Occurrence	Late Triassic	schist	microcline
		3.									
Amir-Amand			Baghlan	35-25-23N	68-09-28E	COA	sedimentary	Occurrence	Early - Middle Jurassic		coal
Amury			Badakhshan	38-10-50N	71-21-20E	SDG			Quaternary?	alluvium	sand and gravel
										sandstone, quartzite,	
Anaghay			Zabol	32-16-31N	66-33-51E	Cu	sedimentary	Occurrence	Proterozoic	marble	malachite
Anaghey			Oruzgan	32-29N	65-46E	F		Occurrence	Triassic	marble	fluorite, calcite
- J			J. J.								
Andar			Vardak	34-16N	68-47E	Mica	pegmatite	Occurrence	Proterozoic	schist, gneiss	muscovite
Andar			Lowgar	34-16-36N	68-46-48E	Mo	pegmatite	Occurrence	Oligocene	granite	molybdenite, sodalite
Andarab			Baghlan	35-33N	69-38E	Mica	pegmatite	Occurrence	Proterozoic	biotite-gneiss	muscovite, biotite, plagioclase
Andarab			Baghlan	35-38-00N	68-56-30E	Cu		Occurrence	Early Cretaceous	greenstone volcanics	malachite
Alluaidu			Dayman	33-36-00N	00-30-30E	Cu		Occurrence	Larry Cretaceous	greenstone voicanics	maracrifte
Andarab I			Baghlan	35-31N	68-46E	Cu		Occurrence	Late Triassic	volcanics, slate	

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
		A fault zone up to 1000 m long and 100 m	Abdullah and others, 1977; Afzali,		
		thick contains numerous quartz veins 200-300	1981; Bowersox and Chamberlin,		
Adamkhel		m long and 0.2-4.0 m thick.	1995	32.768	66.965
Aera*		in long and 0.2-4.0 m thick.	Bowersox and Chamberlin, 1995	34.050	69.633
ricia		Slip-fiber asbestos in a zone 600 m long and	Abdullah and others, 1977;	34.030	07.000
Afdzalkhel		10-15 m thick.	Bowersox and Chamberlin, 1995	33.185	69.539
, iidzaiiii ioi		A gravel bed 2-3 m thick occurs in alluvium	Dewelson and chambering 1776	00.100	07.007
		and alluvial fans over an area of 2.3 km ² .	Abdullah and others, 1977;		
Aghonan		Material is used locally.	Bowersox and Chamberlin, 1995	32.738	67.628
rigitoriari	1.0-9.0 g/t Au, 0.2-0.5%	Waterial is used locally.	Bowersox and Chamberini, 1775	32.730	07.020
	Cu, 0.5% Pb, up to		ESCAP, 1995; Abdullah and		
	0.4% Zn, up to 0.07%	Six different mineralized zones 700-2500 m	others, 1977; Bowersox and		
Ahankashan	Mo	long and 11-75 m wide.	Chamberlin, 1995	34.650	64.383
, marinasman		Peat bed occurs over an area of 2 km2; bed is	chamberini, 1770	01.000	01.000
		35-40 cm thick and lies above a flood plain	Abdullah and others, 1977;		
Ahazde-Kol		terrace.	Bowersox and Chamberlin, 1995	37.390	73.500
A HIGE GO THO!		Cu-bearing zone is 50-60 m thick and of	Abdullah and others, 1977;	07.070	70.000
Akarkhel		unknown length.	Bowersox and Chamberlin, 1995	34.292	69.283
		Skarn lenses up to 500 m long and 70-100 m	Abdullah and others, 1977;		
Alaghzar		thick.	Bowersox and Chamberlin, 1995	32.953	67.549
			Abdullah and others, 1977;		
Alaghzar		Ornamental stone.	Bowersox and Chamberlin, 1995	32.990	67.757
			Abdullah and others, 1977;		
Alamkan		40 m thick quartz-bearing zone.	Bowersox and Chamberlin, 1995	33.318	69.673
Alburs*		3	Bowersox and Chamberlin, 1995	36.333	71.250
			Chmyriov and others, 1973;		
	0.5 Mt sulfur;		ESCAP, 1995; Abdullah and		
	Speculative 0.2 Mt @	Mineralized area is 450-500 m by 700 m and	others, 1977; Bowersox and		
Alburs	40% S	strongly altered.	Chamberlin, 1995	36.583	66.583
		Marble is 20 m thick and crops out through	Abdullah and others, 1977;		
Alghoi		Quaternary formations.	Bowersox and Chamberlin, 1995	34.633	69.150
-		Sediments have been heavily altered by diorite			
		porphyry dikes. Altered areas have finely	Abdullah and others, 1977;		
Alibali		disseminated cinnabar.	Bowersox and Chamberlin, 1995	33.864	65.222
		2 zones with finely disseminated cinnabar; one			
		zone is 530 m long and 5.4 m thick, the other	Abdullah and others, 1977;		
Alibali I		is 250 m long and 5.3 m thick.	Bowersox and Chamberlin, 1995	33.857	65.231
		Pegmatite dikes 100-300 m long and 2-5 m	Abdullah and others, 1977;		
Alma		thick.	Bowersox and Chamberlin, 1995	35.502	71.181
			Abdullah and others, 1977;		
Amir-Amand		Composite coal be 1.7 m thick.	Bowersox and Chamberlin, 1995	35.423	68.158
		In the low 10-m and medium 25- m terraces of	Abdullah and others, 1977;		
Amury		the Panj River.	Bowersox and Chamberlin, 1995	38.181	71.356
		Ferruginous rocks with copper mineralization	Abdullah and others, 1977;		
Anaghay		form body 1500 m long and up to 120 m thick.	Bowersox and Chamberlin, 1995	32.275	66.564
		Fluorite occurs as nodules and nests in parallel		-	
		fissures. Bowersox and Chamberlin give	Abdullah and others, 1977;		
Anaghey		latitude as 3-39N.	Bowersox and Chamberlin, 1995	32.650	65.767
		Pegmatite dikes 500-800 m long and 15-20 m			
		wide. Muscovite crystals are low-quality and	Abdullah and others, 1977;		
Andar		commonly fractured.	Bowersox and Chamberlin, 1995	34.267	68.783
			Abdullah and others, 1977;		
Andar		Pegmatite is 200 m long and 0.5-3.0 m thick.	Bowersox and Chamberlin, 1995	34.277	68.780
			Abdullah and others, 1977;		
Andarab			Bowersox and Chamberlin, 1995	35.550	69.633
		Silicified, malachite-bearing shear zone that is	Abdullah and others, 1977;		
Andarab		200 m long and up to 2.5 m thick.	Bowersox and Chamberlin, 1995	35.633	68.942
		Fault zone (about 1000 m long) has malachite	Abdullah and others, 1977;		
Andarab I		zones.	Bowersox and Chamberlin, 1995	35.517	68.767

	Synonym and Other	Deposit or									
Locality/Deposit Name		District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Andemin			Badakhshan	37-20-23N	74-19-05E	Peat		Occurrence	Quaternary	sediments	peat
Andkhoi (Namaksar Andkhoi, Khwaja Mod)			Faryab	35-45N	65-21E	Hal Mg	evaporite, brine	Active Small Scale mining (1995); D	Late Quaternary - Recent	clay	halite, gypsum
Anghuri	Anguri		Ghazni	32-55-00N	67-32-10E	Au Cu Pb Zn	skarn, veins	Occurrence	Late Permian; Late Cretaceous-Paleocene	carbonate rocks; quartz diorite	chalcopyrite, bornite, covellite, Au
Anghuri			Ghazni	33-19-15N	67-41-05E	Mbl	metasedimentary	Active Small producer (1977)	Late Permian	marble valley alluvium- sandy	marble
Anjir			Takhar			Au	placer			argillaceous rock	native gold
Aranch		Parun Field - Waigal Zone	Nangarhar	35-09-36N	70-58-31E	Li Ta Be	pegmatite	Occurrence	Proterozoic	schist	spodumene, microcline, quartz, cleavelandite, beryl
Arbu			Helmand	29-49N	65-58E	Arag	veins	Active Small Scale mining (1995)	Late Quaternary	andesite-dacite	aragonite
Azzkazu	A (1 11 11)		7-1-1	22.07.02N	// 20 07F	Co. Au	-1	0	Late Cretaceous - Paleocene; Late Triassic		
Arghasu	Arghasu (I, II, III)		Zabol	32-06-02N	66-20-07E	Cu Au	skarn	Occurrence	Early Jurassic Late Cretaceous - Paleocene; Vendian-	diorite; limestone diorite; calcareous	
Arghatu			Zabol	32-18-00N	66-30-20E	Cu	skarn	Occurrence	Cambrian Late Cretaceous -	sediments	
Asanzay	Azanzay		Kandahar	32-03-25N 32-22-04N	66-12-16E	Au Cu	skarn	Occurrence	Paleocene; Late Permian Carboniferous - Early		pyrite, chalcopyrite, gold
Assanak Astana	Assanaka		Zabol Samangan	36-27-00N	66-34-25E 67-42-00E	Au Pb Zn Cu		Occurrence Occurrence	Permian Eocene	limestone	sulfur
Aumiyt			Kandahar	32-22N	65-38E	Fe	skarn	Occurrence	Late Jurassic - Early Cretaceous; Oligocene	carbonate rocks; granite	magnetite, hematite, chalcopyrite,
Awkhorak			Samangan	35-29-53N	67-41-04E	COA		Occurrence	Early to Middle Jurassic	sediments	coal
Awlamqul			Oruzgan	33-52N	66-00E	Hg		Occurrence	Early Cretaceous	limestone	cinnabar
Awraghal			Konar	34-56-10N to 34-57-00N	70-42-30E to 70-44-10E	Sn Be Li	pegmatite	Occurrence	Early Cretaceous	quartz diorite	cassiterite, spodumene, beryl, albite, quartz, microcline
Awshoba			Parvan	35-25N	69-30E	Mica	pegmatite	Occurrence	Proterozoic	gneiss	muscovite
Aynak			Lowgar	34-15-58N	69-18-02E	Cu		D	Vendian-Cambrian	metamorphic rocks	
Aynak Central		Aynak	Lowgar	34-15-58N	69-18-02E	Cu	sedimentary/volca	Occurrence	Vendian-Cambrian	arkosic sandstone,	bornite, chalcopyrite, chalcocite, pyrite, sphalerite, pentlandite, violarite, smaltite, linnaeite, tenorite, brochantite, chalcanthite, chrysocolla, covellite, many others
Aynak Southern		Aynak	Lowgar	34 13 3014	07 10 022	Cu	sedimentary/volca	Occurrence	Vendian-Cambrian	calcareous slate, quartz- albite rock, amphibolite	chrysteona, coverne, many others
Aynak Western		Aynak	Lowgar			Cu	sedimentary/volca	Occurrence	Vendian-Cambrian	arkosic sandstone, dolomitic rocks	bornite, chalcopyrite, pyrite, sphalerite, pentlandite, violarite, smaltite, linnaeite
Badel	Budel		Parvan or Nangarhar	34-50-20N	70-56-30E	GEM	pegmatite	Past or intermittent Small producer	amphibolite, marble, gneiss	schist, limestone	emerald

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
			Abdullah and others, 1977;		
Andemin		Peat occurs over an area of 10 km2.	Bowersox and Chamberlin, 1995	37.340	74.318
			Abdullah and others, 1977; Smith,		
Andkhoi (Namaksar			1975; ESCAP, 1995; Bowersox		
Andkhoi, Khwaja Mod)		Halite is mined for table salt.	and Chamberlin, 1995	35.750	65.350
	0.3-143 g/t Au; up to	Skarns contain disseminated Cu			
	0.6% Cu, 3.7% Pb,	mineralization. Associated veins and tabular	Abdullah and others, 1977;		
Anghuri	2.6% Zn	bodies contain Au, Pb, Zn, and Cu.	Bowersox and Chamberlin, 1995	32.917	67.536
			Abdullah and others, 1977;		
Anghuri			Bowersox and Chamberlin, 1995	33.321	67.685
	Indicated + Inferred	Placer is 2300 m long and 20-70 m wide. Pay			
Anjir	155 kg Au	streak is close to bedrock.	Abdullah and others, 1977		
		Dikes are 50-200 m long and 1.5-5.0 m wide	Rossovskiy and others, 1976b;		
		and occur in an area 5 km by 1 km.	Abdullah and others, 1977;		
Aranch		Occurrence identified by pegmatite float.	Bowersox and Chamberlin, 1995	35.160	70.975
	0 1 11 0 1 7 1 11		Abdullah and others, 1977;		
A 1	Speculative 0.17 Mt	Aragonite veins 100-250 m long and 0.5-4.0 m	ESCAP, 1995; Bowersox and	00.047	(0.0(7
Arbu	aragonite	wide.	Chamberlin, 1995	29.817	68.967
			Abdullah and others, 1977;		
AI				22 101	// 225
Arghasu			Bowersox and Chamberlin, 1995	32.101	66.335
			Abdullah and others, 1977;		
Arabatu		4 skarn zanos un to 150 m long	Bowersox and Chamberlin, 1995	32.300	44 504
Arghatu		6 skarn zones up to 150 m long.	Bowersox and Chamberlin, 1995	32.300	66.506
			Abdullah and others, 1977;		
Acanzay		Skarns up to 300 m long and 0.4 m thick.	Bowersox and Chamberlin, 1995	32.057	66.204
Asanzay		Strongly brecciated, pyritized zone up to 150	Abdullah and others, 1977;	32.037	00.204
Assanak		m long and 2 m thick.	Bowersox and Chamberlin, 1995	32.368	66 574
ASSALIAN		III long and 2 III tillek.	Abdullah and others, 1977;	32.300	66.574
Astana		S-bearing rocks are1 m thick.	Bowersox and Chamberlin, 1995	36.450	67.700
Astaria		Lenticular pods of magnetite over an area up	Abdullah and others, 1977;	30.430	07.700
Aumiyt		to 700 m long.	Bowersox and Chamberlin, 1995	32.367	65.633
Admiye		to 700 m long.	Abdullah and others, 1977;	32.307	03.033
Awkhorak		4 composite coal beds up to 3.35 m thick.	Bowersox and Chamberlin, 1995	35.498	67.684
Awlamgul		Sparse cinnabar dissemination in limestone.	Abdullah and others, 1977	33.867	66.000
		More than 15 pegmatite dikes 500-2000 m			
		long and 1-10 m wide. Three compositions of	Abdullah and others, 1977;	34.936 to	70.708 to
Awraghal		pegmatite dikes.	Bowersox and Chamberlin, 1995	34.950	70.736
		Small, lenticular pegmatite dikes 30-40 m long			
		and 2-3 m thick. Small (6-10 cm²) muscovite	Abdullah and others, 1977;		
Awshoba		crystals that are well-fractured.	Bowersox and Chamberlin, 1995	35.417	69.500
7.110.000		Deposit covers an area of over 40 km ² . Three	Abdullah and others, 1977;	00.117	07.000
Aynak		main areas.	Bowersox and Chamberlin, 1995	34.266	69.301
rynak		main areas.	Bowersox and Chamberini, 1775	34.200	07.501
		Mineralization is conformable with the host			
		rocks , up to 2000 m long, 1000 m wide, and			
	Drill indicated: 175 Mt	60-150 m thick with a maximum depth of 600	Abdullah and others, 1977;		
Aynak Central	@ 2.5% Cu (1995)	m. Deposit has 120,000 m of core drilling.	ESCAP, 1995	34.266	69.301
	= =:=:=================================				
	>50 Mt @ 0.9-1.6% Cu		Abdullah and others, 1977;		
Aynak Southern	(1995)	No oxidized zone at this area.	ESCAP, 1995		
	>50 Mt @ 0.62-2.05%	Extension of Central area. Ore is 2000 m long	Abdullah and others, 1977;		
Aynak Western	Cu (1995)	and 4-94 m thick.	ESCAP, 1995		
*	, , ,				
			Abdullah and others, 1977;		
		Pegmatite vein is 0.2-0.5 m thick by 20 m. In	Chmyriov and others, 1973; Kazmi		
		Konar district. Occurrence is largely worked	and Snee, 1989; Afzali, 1981;		
Badel	1	out.	Bowersox and Chamberlin, 1995	34.839	70.942
Dauci					

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
									Late Cretaceous-		
									Paleocene; Vendian-	quartz monzonite,	
Dh	includes Dealesses I		7	22 12 F/N	((20 045	C A	-1	0	Cambrian; Cambrian-	diorite; marble;	magnetite, bornite, chalcopyrite,
Baghawan	includes Baghawan I		Zabol	32-12-56N	66-30-04E	Cu Au	skarn	Occurrence	Ordovician	sandstone, limestone	pyrite
Baghlan*			Baghlan	35-41-25N	68-22-20E	Ta Nb					
							corporting booted				
Baghran	Baghram		Parvan	34-50-30N	69-28-30E	Asb	serpentine-hosted asbestos	Occurrence	Eocene	ultramafics	chrysotile
Baghtu*	Dagillaili		Kandahar	32-03N	66-03E	Au	aspestos	Occurrence	Locerie	uttamanes	ciii ysotiie
Bagram*			Parvan	34-57N	69-14E	Fe					
9			- di vaii							gabbro, diorite, quartz	
										porphyry dikes,	emerald; quartz, ankerite, pyrite
Bakhi		Panjshir Valley	Kapisa	35-26-00N	69-52-00E	GEM	veins	Active Mine (19950	Ordovician	carbonate skarn, schist	phlogopite, albite, tourmaline
		, , , , , ,	- 1							granitic rocks;	
Bakhtu			Kandahar	32-07N	66-02E	Sn	skarn	Occurrence	Oligocene; Silurian	calcareous sediments	scheelite
	Northern, Southern,										fluorite, sphalerite, galena,
	Eastern, and Western						hydrothermal,		Late Triassic - Early	argillaceous-marly	tennantite, molybdenite,
Bakhud	Zones		Oruzgon	32-27-17N	65-53-58E	F Zn Pb	replacement	Occurrence?, O	Jurassic	sediments, limestone	chalcopyrite, pyrite, barite
Bakiluu	Zuries		Oruzgan	32-27-17IN	03-33-36E	F ZII FD	replacement	Occurrences, O	Julassic	sediments, innestone	chalcopyrite, pyrite, barite
								Active Small			
Bakumvij	Bakunvij		Badakhshan	36-04-50N	71-12-00E	Lst Dol	sedimentary	production (1995)	Permian	dolomite, limestone	limestone, marl, dolomite
Danaming	Balkarivij		Dadamininan	00 0 1 0011	7.1.12.002	Lot Doi	South Fortune	production (1770)	T OTTING!	doloriiko, iirriostorio	innesterie, man, delemite
Balkhab			Balkh	35-43N	66-59E	COA	sedimentary	Occurrence	Early to Middle Jurassic		coal
Balkhab			Jowzjan	35-35N	66-46E	Cu		Past producer?	Ordovician	sandy slate	malashita nurita galana
Daikiiau			Jowzjan	33-33IN	00-40E	Cu		Past producer?	Ordovician	Salluy Slate	malachite, pyrite, galena
Bamyan	Bamiyan		Bamian	34-52N	67-44E	Dol	sedimentary	Occurrence?	Late Permian	dolomite, marl	dolomite
Danis I	Danis I Danis			24 54 N	(7.445	1 -4		0	Lata Dannian	dolomite, limestone,	-1-1ia-
Bamyan-I	Bamyon-I, Bamiyan		Bamian	34-51N	67-44E	Lst	sedimentary	Occurrence?	Late Permian	marl	dolomite
Band			Zabol	32-45-32N	66-53-01E	W Be	greisen, vein	Occurrence	Oligocene	granite	scheelite, beryl, cassiterite
Dana			Edbo.	02 10 0211	00 00 012	50	grosseri, veni	occurronce	ongocono	granico	quartz, tourmaline, cassiterite,
											magnetite, scheelite, galena,
Bandi-Medira	Dahana		Herat	33-47-10N	62-01-20E	Cu Sn	veins, skarn	Occurrence	Oligocene	granite	chalcopyrite
								_			
Band-i-Sarah			Herat	34-04N	64-47E	Fe	shear zone	Occurrence	Proterozoic	limestone	hematite
Band-i-Sultan	Band-e-Sultan		Ghazni	33-43N	68-23E	Mica	pegmatite	Occurrence	schist, gneiss		muscovite
Bangi*			Takhar	36-22N	69-32E	COA	p-ge		grand grand		
<u> </u>											
Barfak			Baghlan	35-19-55N	68-07-12E	COA	sedimentary	Occurrence	Early to Middle Jurassic		coal
										schist, marble,	
Barkhei			Kabol	34-21-15N	69-18-30E	Cu		Occurrence	Vendian-Cambrian Late Triassic; Late	greenstone	
Basharghar			Ghazni	32-56-46N	67-40-43E	Au	skarn	Occurrence	Cretaceous-Paleocene	carbonate rocks; diorite	gold
Dasriai griai			Gridzili	32 30 4014	07 40 432	710	Skarri	Occurrence	oretaccous r alcocerie	carbonate rocks, diorite	gord
Bashlang			Helmand	32-56N	64-56E	Mica	pegmatite	Occurrence	Proterozoic	schist, gneiss	muscovite, quartz
· ·							. ,				
											chalcocite, bornite, covellite,
		1	Kabol	34-15-35N	69-22-30E	Cu	disseminated	Occurrence	Vendian-Cambrian	schist	malachite, azurite
Batkhel I			Kaboi	0110001							
										limestone, quartzite,	
Batkhel I Batkhel II			Kabol	34-16-20N	69-22-10E	Cu	disseminated	Occurrence	Vendian-Cambrian	limestone, quartzite, schist	chalcopyrite, malachite

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
		Skarns at contact of quartz monzonite and			
		marble (Baghawan) and diorite porphyry and	Abdullah and others, 1977;		
Baghawan		sediments (Baghawan I).	Bowersox and Chamberlin, 1995	32.216	66.501
-		Location and commodity match "Tundara"			
Baghlan*		listed elsewhere in this table.	Bowersox and Chamberlin, 1995	35.690	68.372
			Chmyriov and others, 1973;		
		Seven asbestos-bearing zones up to 200 m	Abdullah and others, 1977;		
Baghran	@ 1.73% asbestos	long and 50 m thick.	Bowersox and Chamberlin, 1995	34.842	69.475
Baghtu*			Bowersox and Chamberlin, 1995	32.050 34.950	
Bagram*		Altitude: 3816 m. Quartz-ankerite veins.	Bowersox and Chamberlin, 1995 Bowersox and Chamberlin, 1995;	34.950	69.233
		Panjshir Valley emerald mines in an area 8 by	Bowersox, 1985: Bowersox and		
Bakhi		40 km.	others, 1991	35.433	69.867
Dukin	 	40 KH.	Abdullah and others, 1977:	33.433	07.007
Bakhtu			Bowersox and Chamberlin, 1995	32.117	66.033
	Measured + Indicated +		Abdullah and others, 1977;	-	
	Inferred: 8.79 Mt of	Several tabular bodies at the base of the	Chmyriov and others, 1973;		
	fluorite @ 46.6% fluorite	Arghasu Formation. Occurrences are 80-860	ESCAP, 1995; Jankovic, 1984;		
Bakhud	(1975)	m long, 10-200 m wide, and 1.1-2.8 m thick.	Bowersox and Chamberlin, 1995	32.455	65.899
			Abdullah and others, 1977;		
			ESCAP, 1995; Bowersox and		
Bakumvij			Chamberlin, 1995	38.081	71.200
D 11. 1		Coal seams a few centimeters to 5 m thick.	Abdullah and others, 1977;	05.747	
Balkhab		Coal is black, lustrous, and strongly jointed. In silicified, limonitized fault zone, up to 5000	Bowersox and Chamberlin, 1995	35.717	66.983
		m long and 400 m wide, are 4 mineralized	Abdullah and others, 1977;		
Balkhab		areas.	Bowersox and Chamberlin, 1995	35.583	66.767
Daikilab		aleas.	Abdullah and others, 1977;	33.363	00.707
	Measured: 1.04 Mt to		ESCAP, 1995; Bowersox and		
Bamyan	10 m depth (1965)	Used for flux. Dolomite bed is 60-70 m thick.	Chamberlin, 1995	34.867	67.733
	Measured 7.5 Mt @		Abdullah and others, 1977;		
	1.7% Li2O, 0.0016%		Chmyriov and others, 1973;		
	TaO5, 0.0012% Rb + Cs		ESCAP, 1995; Bowersox and		
Bamyan-I	(1965)	70-80 m thick. Suitable for metallurgical flux.	Chamberlin, 1995	34.850	67.733
			Abdullah and others, 1977;		
Band		Quartz veins occur in 2 greisen zones.	Bowersox and Chamberlin, 1995	32.759	66.884
	0.00.0.450/.6=.0.00	Over 40 veins with tin and copper. In the	Abdullah and athana 1077		
Bandi-Medira	0.02-0.45% Sn, 0.03- 0.05% Cu	southern part of the area are skarns with similar mineralization.	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	33.786	42.022
Dallul-ivieulla	0.05% Cu	Hematite is found in an area 300 x 100 m	Abdullah and others, 1977;	33.700	62.022
Band-i-Sarah		along a fault zone.	Bowersox and Chamberlin, 1995	34.067	64.783
		Pegmatite dikes are a few hundred meters long			
		and 0.2-8 m thick. Muscovite is fractured and	Abdullah and others, 1977;		
Band-i-Sultan		of low quality.	Bowersox and Chamberlin, 1995	33.717	68.383
Bangi*			Bowersox and Chamberlin, 1995	36.367	69.533
			Abdullah and others, 1977;		1
Barfak		3 strongly crumpled coal beds 15-35 cm thick.	Bowersox and Chamberlin, 1995	35.332	68.120
D 11 1		2 copper-bearing zones up to 500 m long and	Abdullah and others, 1977;	046=:	(0
Barkhei		10 m thick.	Bowersox and Chamberlin, 1995	34.354	69.308
Basharghar		4 lenticular diopside-vesuvianite skarns up to 80 m long and about 1 m thick.	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	32.946	67.679
Dasi lai Yi lai	+	Pegmatite dikes and quartz-muscovite veins.	Abdullah and others, 1977;	32.946	07.079
Bashlang		Small, low quality muscovite crystals.	Bowersox and Chamberlin, 1995	32.933	64.933
Dasmany		2 zones (450 m long x 5 m thick and 250 m	25.00.55% drid Oridinocrini, 1775	32.733	04.730
		long x 9 m thick) with disseminations and pods	Abdullah and others, 1977:		
Batkhel I		of Cu mineralization.	Bowersox and Chamberlin, 1995	34.260	69.375
***		4 closely-spaced zones with pods and	Abdullah and others, 1977;	3200	21.070
Batkhel II		disseminations of Cu mineralization.	Bowersox and Chamberlin, 1995	34.272	69.369
		Zone 400 m long and up to 30 m wide with	Abdullah and others, 1977;		
Batkhel III	I	disseminated Cu mineralization.	Bowersox and Chamberlin, 1995	34.269	69.379

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Batkhel IV			Lowgar	34-14-50N	69-21-50E	Cu	disseminated	Occurrence	Vendian-Cambrian	amphibolite, slate	chalcocite, covellite, malachite
Baytamur			Zabol	32-46-06N	66-48-06E	Sn W		Occurrence	Oligocene	granite	wolframite, cassiterite,
Bazarak			Kapisa	35-21N	69-31E	Cu	veins	Past Small producer (1977)	Proterozoic	schist, quartzite	chalcopyrite, quartz
Bazarak			Takhar	36-28-36N	69-35-45E	COA		Occurrence	Early-Middle Jurassic	sandstone, siltstone	coal
Bedan			Ghowr	34-25N	64-31E	Cu Pb Zn	veins	Occurrence	Proterozoic	schist	
Belaw			Ghazni	32-57-50N	67-33-20E	Au Cu	skarn	Occurrence	Late Cretaceous- Paleocene; Late Permian		pyrite, chalcopyrite, native gold, hematite
Benosh Darrah			Herat	34-34-30N	62-46-20E	Lst	sedimentary	Active mine	Early Triassic	limestone	limestone, marl
Bibi-Ghauker	Bibi-Gauhar	Kalai-Assad	Kandahar			Pb Zn Cd Cu	skarn, hydrothermal	Occurrence	Late Triassic; Oligocene	garnet-pyroxene skarn, limestone; granite	galena, sphalerite, chalcopyrite, pyrite, garnet, wollastonite
Bini Kama			Badakhshan	38-18-30N	71-17-00E	Mbl	metasedimentary	Occurrence	Silurian-Devonian Oligocene; Eocene-	marble, granite	marble
Bisar			Farah	32-58-56N	61-40-57E	Sn W		Occurrence	Oligocene	granosyenite; volcanics	hematite
Bod-i-Sanjur Boi-Qara			Herat Badakhshan	36-59-30N	73-53-52E	Cu Pb Zn(?) As Sb Ag	sedimentary veins	Occurrence	Early Carboniferous; Carboniferous-Early Permian	limestone	chalcopyrite, galena
Boi-Tibat			Badakhshan	37-20-22N	73-11-13E	Peat	sedimentary	Occurrence	Quaternary		peat
Bolo	includes Mizan occurrence		Zabol	32-14-04N	66-03-34E	Cu	breccia, skarn	Occurrence	Vendian-Cambrian; Late Cretaceous-Paleocene	marble; diorite	malachite, pyrite (Bolo); magnetite, chalcopyrite, bornite, covellite ()
Bolo			Ghazni	32-54-30N	67-32-40E	Au	shear zone	Occurrence	Late Permian	dolomitized limestone	
Boni		Parun Field	Nangarhar	35-10-54N	70-49-39E	Li	pegmatite	Occurrence	Proterozoic	schist	spodumene, microcline, albite
Boraghana			Kandahar	32-08N	66-05E	Sn	veins	Occurrence	Oligocene	granite	cassiterite, quartz, chalcopyrite, galena
Boraghana I	Baraghana-I, Baraghand- I		Kandahar	32-08-25N	66-03-36E	W Sn	skarn	Occurrence	Silurian; Oligocene	marble, garnet-pyroxene skarn; granite	chalcopyrite
Border-Side			Farah	33-15N	60-40E	Cu	shear zone	Occurrence	Eocene-Oligocene	dacite, dacite tuff	malachite, pyrite, chalcopyrite, chalcocite
Bosh-Kunak	Bedsh-Kunak		Badakhshan	37-20-55N	73-22-38E	Peat		Occurrence	Quaternary		peat
Bulgaja	Bulghaja		Farah	33-09N	61-49E	Sn Pb Zn		Occurrence	Eocene-Oligocene	volcanics gabbro, diorite, quartz	
Butak*		Panjshir Valley	Kapisa	35-27-00N	69-50-00E	GEM	veins	Active Mine (19950	Ordovician	porphyry dikes, carbonate skarn, schist	emerald; quartz, ankerite, pyrite, phlogopite, albite, tourmaline
Buzghala II			Oruzgan	33-25-13N	66-35-46E	Au Cu	skarn	Occurrence	Oligocene; Carboniferous Early Permian	granite; limestone	chalcopyrite, magnetite

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
		2 zones, up to 600 m long and 10 m thick,			
		with disseminations and pods of Cu	Abdullah and others, 1977;		
Batkhel IV		mineralization.	Bowersox and Chamberlin, 1995	34.247	69.364
		Greisen zones with veins containing Sn-W	Abdullah and others, 1977;		
Baytamur		mineralization.	Bowersox and Chamberlin, 1995	32.768	66.802
D		V-i t- 40 thi-l-	Abdullah and others, 1977;	25.250	/0.517
Bazarak		Veins up to 40 cm thick. 6 composite coal beds up to 2.05 m thick.	Bowersox and Chamberlin, 1995	35.350	69.517
		Coal may be suitable for thermal power or as			
		coking coal. Bowersox and Chamberlin (1995)	Abdullah and others 1077:		
Bazarak		give latitude as 36-38-36N.	Bowersox and Chamberlin, 1995	36.643	69.596
Duzuruk		Quartz and quartz-barite veins with	Abdullah and others, 1977;	30.043	07.070
Bedan		disseminated sulfides.	Bowersox and Chamberlin, 1995	34.417	64.517
Deddii		disserimated surfaces.	Bowersox and Chamberini, 1775	34.417	04.517
		Skarns, serpentinized zones and ferruginous	Abdullah and others, 1977;		
Belaw		zones with Au and Cu mineralization.	Bowersox and Chamberlin, 1995	32.964	67.556
			Abdullah and others, 1977;		
i			ESCAP, 1995; Bowersox and		
Benosh Darrah	12000 Mt	Up to 464 m thick. Suitable for cement.	Chamberlin, 1995	34.575	62.772
	Inferred 0.069 Mt @				
	30.4% Zn, 7.86% Pb,		Abdullah and others, 1977; Afzali,		
Bibi-Ghauker	0.2% Cd	Weakly mineralized roof pendent.	1981; Chmyriov and others, 1973		
		Crops out over an area of about 2 km2.			
	Speculative 500 Mm ³	Suitable for cement and as building and facing			
Bini Kama	(1967)	stone.	ESCAP, 1995	38.308	71.283
		Several silicified hematite zones up to 2000 m	Abdullah and others, 1977;		
Bisar		long and 100 m wide with Sn and W.	Bowersox and Chamberlin, 1995	32.982	61.683
Bod-i-Sanjur		Cement grade.	ESCAP, 1995		
			Abdullah and others, 1977;		
Boi-Qara		Quartz veins up to 3 m long and 0.2 m thick.	Bowersox and Chamberlin, 1995	36.992	73.898
		A peat bed, 30-40 cm thick, occurs over an			
		area of 1km2 near the mouth of the Boi-Tibat	Abdullah and others, 1977;		
Boi-Tibat		River.	Bowersox and Chamberlin, 1995	37.339	73.187
		Brecciated zone (1000 m long and 1-15 m thick) at contact with malachite mineralization.			
		Mizan occurrence is southwest of bolo and	Ab d. U.b 1077		
D-I-		occurs in skarn.	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	22.224	// 050
Bolo		Shear zone 140 m long and 0.5-12.0 m thick	Abdullah and others, 1977;	32.234	66.059
Dolo		contains disseminated Au.	Bowersox and Chamberlin, 1995	32.908	67.544
Bolo		Pegmatite dikes are hundreds of meters long	Abdullah and others, 1977;	32.908	67.544
Boni	15-25% spodumene	and 3-10 m thick.	Bowersox and Chamberlin, 1995	35.182	70.828
DOM	13-2370 spodumene	Quartz veins up to 10 m long and 0.1 m thick	Abdullah and others, 1977:	33.102	70.020
Boraghana	2.39-4.62% Sn	with Sn mineralization.	Bowersox and Chamberlin, 1995	32.133	66.083
Doragnana	2.37 4.0270 311	With Sit Hillicianzation.	Abdullah and others, 1977;	32.133	00.003
	0.42-0.50% WO ₃ ; 0.05-	Skarn lenses 300 m x 40 m and 380 m x 15	ESCAP, 1995; Bowersox and		
Boraghana I	0.06% WO3, 0.5% Cu	m.	Chamberlin, 1995	32.140	66.060
			Abdullah and others, 1977;		
Border-Side		2 shear zones with mineralization.	Bowersox and Chamberlin, 1995	33.250	60.667
		Peat bed, 30-50 cm thick, occurs over area of			
		5 km2. Occurrence is above the flood plain in a	Abdullah and others, 1977:		
Bosh-Kunak		terrace.	Bowersox and Chamberlin, 1995	37.349	73.377
	0.11-2.00% sn, 0.01-				
	1.00% Pb, 0.01-0.03%	Serpentinized brecciated zone 500 m long by	Abdullah and others, 1977;		
Bulgaja	Zn	10 m thick contains mineralization.	Bowersox and Chamberlin, 1995	33.150	61.817
		Altitude: 3962 m. Quartz-ankerite veins.			
		Panjshir Valley emerald mines in an area 8 by			
Butak*		40 km.	Bowersox and Chamberlin, 1995	35.450	69.833
		Magnetite-ludwigite and serpentine-diopside	·		
		skarns up to 200 m long and 12 m thick with	Abdullah and others, 1977;		1
		disseminated Cu and Au mineralization.		33.420	66.596

emerald; quartz, ankerite, pyrite philogopite, albite, tourmaline native gold ruby salt coal gypsum
phlogopite, albite, tourmaline native gold ruby salt coal
phlogopite, albite, tourmaline native gold ruby salt coal
salt coal gypsum
salt coal gypsum
salt coal gypsum
gypsum
gypsum
gypsum
gypsum
halite, gypsum
halite, gypsum
coal
barite
graphite
bauxite
pyrite, chalcopyrite, covellite, bornite, malachite, cuprite,
azurite, native gold
hematite
hematite
s
beryl
malaahita
malachite
gun qui m
gypsum lapis lazuli
s

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
			Bowersox and Chamberlin, 1995;		
		Altitude: 2724 m. Kazmi and Snee give	Abdullah and others, 1977; Kazmi		
		location as 35-28-35N, 69-30-00E. Quartz-	and Snee, 1989; Bowersox, 1985;		
		ankerite veins. Panjshir Valley emerald mines	Bowersox and others, 1991;		
Buzmal		in an area 8 by 40 km.	Bowersox and Chamberlin, 1995	35.476	69.833
		Placers in the Nooraba and Anjir Valley	Abdullah and others, 1977;		
Chah-i-Ab		drainages.	Bowersox and Chamberlin, 1995	37.417	69.817
Chak*			Bowersox and Chamberlin, 1995		
		2 W-bearing skarn lenses up to 150 m long and			
Chak		0.1-0.2 m thick occur in roof pendant.	Bowersox and Chamberlin, 1995	33.694	66.178
		Cu mineralization extends over an area 200 m	Abdullah and others, 1977;		
Chakari		long and 3-5 m thick.	Bowersox and Chamberlin, 1995	34.367	69.389
Chakhansar*			Bowersox and Chamberlin, 1995	31.183	61.967
		3 coal beds 0.25-0.61 m thick. The coal has	Abdullah and others, 1977;		
Chal		been worked by hand in the past.	Bowersox and Chamberlin, 1995	36.503	69.489
		Communication to account material (1)	Abdullah and others, 1977;		
Ch-I		Gypsum beds up to several meters thick	ESCAP, 1995; Bowersox and	0/ 55:	10 50-
Chal		contaminated with clay.	Chamberlin, 1995	36.551	69.537
			Abdullah and others, 1977; Chmyriov and others, 1973;		
Chall		Dook salt group out along a longth of 1000 m	Bowersox and Chamberlin, 1995	36.550	40 522
Chal-I		Rock salt crops out along a length of 1000 m.	Abdullah and others, 1977;	30.330	69.533
			Chmyriov and others, 1973;		
Chal-II		20 m deep workings stop in salt.	Bowersox and Chamberlin, 1995	36.533	69.517
Cilai-ii		Coal bed is 0.48 m thick and is structurally	Abdullah and others, 1977;	30.333	09.517
Chalay-Khurd		complex.	Bowersox and Chamberlin, 1995	36.486	69.628
Oridiay Kridia		Shear zone with numerous 10-30 cm thick	Abdullah and others, 1977;	30.400	07.020
Chapkul		barite veinlets.	Bowersox and Chamberlin, 1995	34.696	68.133
опарка		Shear zone, over 4000 m long and 1-2 m thick,	Abdullah and others, 1977:	01.070	00.100
Charh II		contains W mineralization.	Bowersox and Chamberlin, 1995	33.900	66.638
			Abdullah and others, 1977;		
			Chmyriov and others, 1973;		
Charkh		Flake graphite.	Bowersox and Chamberlin, 1995	33.750	68.883
		5 red to dirty green bauxite lenses 10-30 m	Abdullah and others, 1977;		
Char-Qala		long and 8.0-25.0 m thick.	Bowersox and Chamberlin, 1995	34.767	68.200
	Speculative 13,000 t				
	Cu and 1.59 t Au (No. 1		Abdullah and others, 1977;		
Charsu	Area)		Bowersox and Chamberlin, 1995	32.048	66.303
			Abdullah and others, 1977;		
Charwazi II		long and 3-5 m thick.	Bowersox and Chamberlin, 1995	34.365	69.313
		Cu mineralization extends over an area 300 m	Abdullah and others, 1977;		
Charwazi III		long and 1 m thick.	Bowersox and Chamberlin, 1995	34.347	69.300
Chanuari IV		Cu mineralization extends over an area 400 m	Abdullah and others, 1977;	24 222	/0.212
Charwazi IV		long and 5-15 m thick. Hematite-bearing zone is 2000 m long and	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	34.339	69.318
Chachma i Dag		300 m thick.	Bowersox and Chamberlin, 1995	24 150	42.422
Chashma-i-Reg Chashma-i-Shafa	0.11 Mt @ 88.% SiO ₂	JOO III UIICK.	Chmyriov and others, 1973	34.150	62.433
onusimia-i-Shara	U. 1 I IVIL W 68.% SIU2	Hg mineralization in small hydrothermally-	omingriov and outers, 1973		
Chashnak		altered zones.	Abdullah and others, 1977	32.926	63.621
Chasnnak Chawki-Sarhani*	 	altered ZUIIES.	Bowersox and Chamberlin, 1995	34.800	70.183
OHUWKI-Jai HAIH	 	Quartz veins with Cu mineralization. Bowersox	DOWGISON AND CHAITIDETHII, 1995	34.000	70.103
		and Chamberlin (1995) give longitude as 65-	Abdullah and others, 1977;		
Chawni		25F.	Bowersox and Chamberlin, 1995	32.167	65.417
		2 gypsum-bearing beds; one 5000 m long and		32.107	55.417
	I	30 m thick, the second 1500 m long and up to	Abdullah and others, 1977;		
Cherulang		20 m thick.	Bowersox and Chamberlin, 1995	34.733	62.042
Chilak*			Bowersox and Chamberlin, 1995	36.367	71.217
				22.307	
		Mineralized area is 21 km 2 and restricted to a	Abdullah and others, 1977; Afzali,		
		fault zone containing 40 quartz veins; 4 of the	1981; Bowersox and Chamberlin,	37.433 to	70.250 to
Chilkonshar	Speculative 245 kg Au	veins have "commercial" gold concentrations.	1995	37.500	70.283

		.									
Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
	Includes Central,										
Chinar	Southern, and Western zones		Kandahar	32-11-15N	65-39-10E	Sn Au Cu	skarn, other	Occurrence	Late Triassic; Oligocene	carbonates; diorite porphyry, granitic dikes	cassiterite, chalcopyrite, bornite
Sillia	Zuries		Kariuariai	32-11-13N	03-39-10E	Sii Au Cu	Skarri, Other	Occurrence	Late Triassic, Oligocerie	porpriyry, granitic dikes	native gold
Chinar			K d - b	32-14N	65-32E	Fe	skarn	Doot producer (1077) Late Triassic; Oligocene	limestone, granita	homotito
Sillidi			Kandahar	32-14IN	03-32E	re	Skaili	Fast producer (1977	Early Cretaceous;	limestone; granite	hematite
Chohe-Arusi	Chohe-Hrusi		Farah	32-51-45N	61-13-00E	Cu	skarn	Occurrence	Oligocene	limestone; granite	malachite, azurite
Choh-i-Surkh			Ghazni	32-54-22N	67-40-24E	Au	shear zone	Occurrence	Middle Triassic	limestone	hematite, limonite
Chokrak			Zabol	32-16-40N	66-28-38E	Cu	shoor zone	Oggurrance	Dratarazaia	conditions	
JIOKI dK			Zaboi	32-10-40N	00-20-30E	Cu	shear zone	Occurrence	Proterozoic	sandstone	
Chongay*		Jegdalek				GEM		Active mine (1995)	Late Triassic-Middle		ruby
Chosnudi-Bolo			Badakhshan	37-48-10N	71-34-39E	Cu Sn	shear zone/vein	Occurrence	Jurassic; Eocene- Oligocene	sandstone; volcanics	
oneshadi Bele			Dadamisman	07 10 1011	7.101072	54 5.1	Silour Zorio, voin	Cocarronce	- Grigodonio	Sarrastorio, volcarrios	
Chukri-Naw	Chukri-naw		Kapisa	35-36-24N	69-53-40E	Fe Ag		Occurrence	Proterozoic	marble	siderite, hematite
Chura			Oruzgan	32-43N	65-49E	F	veins	Occurrence	Triassic	limestone	fluorite, calcite
Chuy			Bamian	34-45-37N	68-13-00E	Fe		Occurrence	Proterozoic	schist	hematite, magnetite
Cone Placer			Farah	33-03-50N	61-00-00E	Sn	placer	Occurrence	Recent	alluvium, talus	cassiterite
Dacite			Herat	33-47N	62-02E	Sn	veins	Occurrence	Oligocene; Eocene- Oligocene	granite; volcanics	quartz, tourmaline
Dahana	Dakana		Herat	33-46N	62-01E	Cu Pb Zn	skarn	Occurrence	Oligocene; Early Cretaceous	grapito, upoposified	magnetite, Cu sulfides
Dahana	Dakana		пегаг	33-46IV	62-UTE	Cu Pb Zii	shear zone,	Occurrence	Cretaceous	granite; unspecified carbonate rocks; diorite-	magnetite, cu sumaes
Dahane Revat	Bakhi		Parvan	35-29N	69-50E	GEM	hydrothermal?		Ordovician	gabbro	emerald
Dahane-Tor			Samangan	35-43-13N	67-15-41E	Cly	sedimentary		Early to Middle Jurassic	sandy mudstone, clay	clay
			Jamangan							anney measure, may	
Dahane-Tor		Darrah-i-Suf coal district	Samangan	35-42-20N	67-17-34E	COA	sedimentary	Active mine (1995), D	Early to Middle Jurassic		
Dahane-Tor*			Samangan	34-36-00N	63-09-30E	COA		D	Middle-Late		
Danay Ghury			Baghlan	35-43-55N	68-18-56E	TIC		Occurrence	Carboniferous;	slate; ultrabasic plug	talc
Dangam			Konar	35-01N	71-28E	Fe		Occurrence	Early Carboniferous	slate, hornfels	hematite
Daqq-i-Tundi*			Farah	32-26N	61-05E	Bri Hal					salt
Dara-i-Neel			Parvan	34-54N	64-34E	Fe		Occurrence			martite
Darai Nur						Li	pegmatite				spodumene
											quartz, microcline, albite, muscovite, garnet, columbite-
Daram Daram			Parvan	34-50-16N	69-46-18E	Ta Nb Sn	pegmatite	Occurrence	Proterozoic	gneissic granite	tantalite, cassiterite
				04.001	70.405	0. 5					quartz, rock crystal, muscovite,
Darawa-Su	Darava-Su Includes Eastern,		Badakhshan	36-09N	70-48E	Qtz Be	pegmatite	Occurrence	Archean	gneiss	beryl
Dorband	Central and Western		K-II	24 14 N	40.245	Cu	sedimentary/volca		Drotorozoio	marble; schist,	chalaspyrita barnita pyrit-
Darband	areas	1	Kabol	34-16N	69-24E	Cu	THE	Occurrence, D	Proterozoic	amphibolite	chalcopyrite, bornite, pyrite

	Deposit Size and (or)			Decimal	Decimal
Locality/Deposit Name	Grade	Comments	References	Latitude	Longitude
		Central and Southern zones contain Sn, Cu,			
		and Au mineralization in skarn. The richest Sn			
		mineralization is in feather joints in the			
		Western area. Bowersox and Chamberlin	Abdullah and others, 1977;		
Chinar		(1995) give longitude as 65-39-10E.	Bowersox and Chamberlin, 1995	32.188	65.653
	Speculative 1 Mt (bog	Iron is concentrated in skarnified limestone. 5	Abdullah and others, 1977; Afzali,		
	iron); 2-2.5 Mt	bog iron outcrops and 2 hematite occurrences.			
Chinar	(hematite)	Hematite occurrences worked in the past.	1995	32.233	65.533
O.I.I.I.G.	(Homatro)	Skarn zones are 500-600 m long and 100-200	Abdullah and others, 1977;	02.200	00.000
Chohe-Arusi		m thick.	Bowersox and Chamberlin, 1995	32.863	61.217
		Altered shear zone (100 m long and 0.2-2.5 m	Abdullah and others, 1977;		
Choh-i-Surkh	0.6-3.2 g/t Au	thick).	Bowersox and Chamberlin, 1995	32.906	67.673
		Mineralization found in brecciated, ferruginous,			
Ch-lineli		silicified fault zone 1000 m long and 2-8 m thick.	Abdullah and others, 1977;	22.270	// 477
Chokrak		Gems of are very pink and not of highest	Bowersox and Chamberlin, 1995	32.278	66.477
Chongay*		quality.	Bowersox and Chamberlin, 1995		
Criorigay		Hydrothermally-altered area up to 3000 m	Bowersox and Chamberini, 1775		
		long and 150-200 m thick contains Cu	Abdullah and others, 1977;		
Chosnudi-Bolo		mineralization.	Bowersox and Chamberlin, 1995	37.803	71.578
		Siderite-hematite lenses up to 1000 m long and			
		2-15 m thick contain significant Ag (>1000	Abdullah and others, 1977;		
Chukri-Naw		g/t).	Bowersox and Chamberlin, 1995	35.607	69.894
01			Abdullah and others, 1977;	00.747	(5.047
Chura		Hematite-magnetite body (conformable with	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	32.717	65.817
Chuy		schist) is 400 m long and 2.5-10.0 m thick.	Bowersox and Chamberlin, 1995	34.760	68.217
Cone Placer		scriist) is 400 fit long and 2.5-10.0 fit thick.	Abdullah and others, 1977	33.064	61.000
00110 1 14001			Abdullah and others, 1977;	00.001	01.000
Dacite			Bowersox and Chamberlin, 1995	33.783	62.033
		Skarn zone up to 1200 m long contains Cu	Abdullah and others, 1977;		
Dahana		sulfides.	Bowersox and Chamberlin, 1995	33.767	62.017
			Abdullah and others, 1977; Kazmi		
Dahane Revat		In Panjsher Valley.	and Snee, 1989	35.483	69.833
		Clay bed is 40-50 m thick and suitable for	Abdullah and others, 1977; ESCAP, 1995; Bowersox and		
Dahane-Tor		brick and roofing tile manufacture.	Chamberlin, 1995	35.720	67.261
Dariane-10i	Speculative reserves: 10	brick and rooming the mandracture.	ESCAP, 1995; Abdullah and	33.720	07.201
		2 closely spaced coal beds, one 2.0 m thick,	others, 1977; Afzali, 1981;		
Dahane-Tor	58.4-71.1% vitrinite	the other 3.54 m thick. Coking coal.	Bowersox and Chamberlin, 1995	35.706	67.293
		This latitude-longitude matches that of the		34.600	63.158
Dahane-Tor*		Majid-I-Chubi coal deposit.	Bowersox and Chamberlin, 1995	34.000	03.136
		Bowersox and Chamberlin give longitude as 68			
Danay Ghury		17-56E. Talc zone is 1000 m².	Bowersox and Chamberlin, 1995	35.732	68.299
D		Small hematite lenses (200 m long x 2 m	Abdullah and others, 1977;	25.017	71 4/7
Dangam Dagg-i-Tundi*		thick)	Bowersox and Chamberlin, 1995 Bowersox and Chamberlin, 1995	35.017 32.433	71.467 61.083
Daqq-i-Turiui			Abdullah and others, 1977;	32.433	01.003
Dara-i-Neel		Mineralization consists of martite float.	Bowersox and Chamberlin, 1995	34.900	64.567
Darai Nur		William and an addition of the title float.	Rossovskiy and others, 1976b	011700	01.007
			Abdullah and others, 1977;		
Daram Daram		10-15 pegmatite dikes 0.3-1.5 m thick.	Bowersox and Chamberlin, 1995	34.838	69.772
			ESCAP, 1995; Abdullah and		
			others, 1977; Bowersox and		
Darawa-Su		Pegmatite is 30 m long and 10 m thick.	Chamberlin, 1995	36.150	70.800
		Mineralized area is 7000 m long and 100-	ESCAP, 1995; Abdullah and		
Darband	90 Mt @ 0 6 2 060/ C	1000 m wide and contains 3 main areas up to 2000 m long.	others, 1977; Bowersox and Chamberlin, 1995	34.267	69.400
uai vai iu	80 Mt @ 0.6-2.06% Cu	2000 HT long.	Chamberiii, 1995	34.26/	09.400

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
					-	2			, , ,		
				34-22-40N to	67-48-30E to						tantalite-columbite, cassiterite, albite, tourmaline, ilmenite.
Dardang			Vardak	34-22-40N to	67-48-30E to	Ta Nb Sn	pegmatite, alluvial	Occurrence	Proterozoic	phyllitic slate	muscovite, quartz
											chalcocite, cuprite, bornite, nativ
Darh			Lowgar	34-02-36N	69-22-40E	Cu		Occurrence	Eocene	ultrabasic rocks	copper, malachite
				33-43-00N to	66-41-00E to						
Dariw-Sheng			Oruzgan	33-48-30N	66-50-00E	Sn W		Occurrence	Oligocene	granite	cassiterite, scheelite
							hydrothermal			gabbro, diorite, quartz	emerald; beryl, quartz, ankerite,
Darkhenj	Khenj, Dar Khenj	Panjshir Valley	Parvan/Kapisa	35-24-50N	69-45-30E	GEM	veins, skarn, shear zone	Active Mine (19950	Ordovician	porphyry dikes, carbonate skarn, schist	pyrite, phlogopite, albite, tourmaline
•	, , , , , ,							,		,	pyrrhotite, chalcopyrite,
	Darrah-Alasang, Dara-					Cu Pb Zn Sn W			Late Triassic - Early Jurassic; Middle-Late		sphalerite, galena, magnetite, ilmenite, martite, covellite,
Darra Alasang	Alasang		Baghlan	35-18-59N	68-07-16E	Au	skarn	Occurrence	Triassic	granite; slate	scheelite, garnet
Darra Suf*	J. C.		Balkh	35-42N	67-28E	COA				5	coal
Darra-i-Chartagh			Herat	34-26-20N	62-46-00E	Lst	sedimentary	Producer?	Early Triassic	limestone, marl	limestone
Darra-i-Kolon			Takhar	36-30-00N	69-31-10E	COA	sedimentary	Occurrence	Early to Middle Jurassic		coal
Darra-I-Roiori	Darra Nur; Includes Dike		Takilai	30-30-0011	07-31-10E	COA	sedimental y	Occurrence	Early to Middle Surassic		magnetite, pyrite, galena,
	41 area, Darra-i-Nur,										chalcopyrite, cerussite,
Darra-i-Nur	Yakhata-Khum area,		Kandahar	32-12N to 32- 16N	65-41E to 65- 46E	Pb Zn	ckorn	Small Scale past production	Lata Triancia ta Jurgania	carbonates intruded by Oligocene granite	smithsonite, bornite, malachite, azurite
Darra-i-Pec	Dailanar area		Konar	35-00N	70-37E	GEM Be	skarn	production	Late Triassic to Jurassic	Oligocerie granite	beryl
Darrahe-Nur deposit		Darrahe-Nur Pegmatite Field	Nangarhar	34-39-40N	70-32-30E	Be Nb Ta Sn	pegmatite	Past or intermittent Small producer, D	Early Cretaceous	diorite, quartz diorite	beryl, spodumene, microcline, columbite-tantalite, cassiterite
burrane ivai deposit		r eginatite i icia	rvarigarriai	34 37 4014	70 32 302	DC IVD TO SIT	pegmatite	Sman producer, B	Early Orciaccous	diorite, quartz diorite	couribite turituite, cussiterite
											muscovite, beryl, spodumene,
	Darrahe-Pech, Dara-i-	Darra-i-Pech		34-55-02N to	70-44-12E to	Be Mica Li Nb Ta		Past or intermittent	Early Cretaceous; Miss-	gabbro and quartz	columbite-tantalite, microcline,
Darra-i-Pech deposit	Pech, Darrahe-i-Peck	Field	Nangarhar	34-55-53E	70-44-53E	Fld	pegmatite	Small producer	Early Triassic	diorite; schist, limestone	albite
										carbonate rocks;	
										gabbro, diorite, quartz	
							veins, shear zone,			porphyry dikes,	emerald; quartz, ankerite, pyrite
Darun	Darum	Panjshir Valley	Kapisa	35-26-00N	69-59-00E	GEM	hydrothermal?	Active Mine (19950	Ordovician;	carbonate skarn, schist	phlogopite, albite, tourmaline
		Darrah-i-Suf coal		35-40N to 35-	67-23E to 67-						
Darwaza		district	Samangan	42N	27E	COA	sedimentary	Occurrence, D	Early to Middle Jurassic		coal
Darwaza			Jowzjan	35-54-34N	65-58-48E	Hg	hydrothermal	Occurrence	Early Cretaceous;	volcanoclastic sediments	
			JOWZJaii				nyurumermar	occurrence		marble, limestone,	
Daryabghar			Zabol	32-27-22N	66-35-00E	Au Cu	skarn	Occurrence	Late Devonian	sandstone	
Dasht-i-Safed			Bamian	35-17-09N	67-53-08E	Gyp		Occurrence, D	Late Cretaceous- Paleocene	clay, limestone	gypsum
						_			Late Cretaceous-	3.	37
Dasht-i-Safed			Bamian	35-18-32N	67-57-24E	S		Showing	Paleocene Late Cenozoic;	marl, gypsum, celestite? volcanics; sediments;	native sulfur
Daste Nawar						NaCO	brine	Occurrence	Paleozoic; Recent	lacustrine silt, clay	

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
		Pegmatite dikes and veins up to 40 m long and			
		45 m wide. Over 50 dikes of 2 different types			
		have been identified. Small alluvial Sn			
		deposits are associated with the Sn	Abdullah and others, 1977;	34.378 to	67.808 to
Dardang		pegmatites.	Bowersox and Chamberlin, 1995	34.408	67.828
			Abdullah and others, 1977;		
Darh		2 zones up to 100 m long and 3 m thick. Sheared, silicified zones in an area of about	Bowersox and Chamberlin, 1995	34.043	69.378
		120 km2 contain quartz veins with	Abdullah and others, 1977;	33.717 to	66.683 to
Dariw-Sheng		disseminated sulfides.	Bowersox and Chamberlin, 1995	33808	66.833
			Abdullah and others, 1977;		
		Emerald-bearing dikes and sills are 430-450 m			
		long and have been traced up to 52 m along	1989; Bowersox and Chamberlin,		
		strike and up to 30 m downdip. Altitude:	1995; Bowersox, 1985; Bowersox		
Darkhenj		2957 m.	and others, 1991	35.414	69.758
	0.1-3.0% Cu, up 1% Pb,				
	0.3-1.0% Zn, up to 0.1%		Abdullah and others, 1977;		
	Sn, 0.01% W, up to 1		Chmyriov and others, 1973;		
Darra Alasang	g/t Au	Thick zones of skarn up to 200 m long.	Bowersox and Chamberlin, 1995	35.316	
Darra Suf*			Bowersox and Chamberlin, 1995	35.700	67.467
			Abdullah and others, 1977;		
		Limestone suitable for cement. Deposit is 5-6	ESCAP, 1995; Bowersox and		
Darra-i-Chartagh	1000 Mt	km long and 200-464 m thick.	Chamberlin, 1995	34.439	62.767
			Abdullah and others, 1977;		
Darra-i-Kolon		5 coal beds 0.34 - 0.86 m thick.	Bowersox and Chamberlin, 1995	36.500	69.519
	0.4 Mt + 0.041 Mt (dike)	4 main areas: Dyke 41, Darra-i-Nur, Yakata	Abdullah and others, 1977; Afzali,	32.200 to	65.683 to
Darra-i-Nur	@ 12% Zn + Pb	Khum, Dailanar.	1981: ESCAP, 1995	32.267	65.767
Darra-i-Pec	@ 1270 ZII + 1 D	Kridiri, Dalianar.	Bowersox and Chamberlin, 1995	35.000	70.617
Darra FF CC			ESCAP, 1995; Abdullah and	33.000	70.017
		Over 40 mineralized dikes and lens-shaped	others, 1977; Bowersox and		
Darrahe-Nur deposit	Prod: 130 t of beryl	bodies. Beryl may not be of export quality.	Chamberlin, 1995	34.661	70.542
	Resvs (1977): -0.100 Mt				
	@ 0.354% Li ₂ 0; 2300 t				
	beryl @ 0.085% BeO;	2 types of pegmatites: 1) large, albitized			
	9750 t @ 0.038-0.072%	microcline pegmatites with beryl; 2)	Abdullah and others, 1977;		
	BeO: 14200 t @ 0.05%	spodumene-albite pegmatites with complex Li-	ESCAP, 1995; Bowersox and	34.917 to	70.737 to
Darra-i-Pech deposit	BeO	Be mineralization.	Chamberlin, 1995	34.931	70.748
Darra FF Con doposit	200	Bo minoranzation.	Chamberini, 1770	01.701	70.710
i		Altitude: 2972 m. In Panjsher Valley. Kazmi			
		and Snee and Abdullah give location as 35-29-			
		15N, 68-54-15E. Quartz-ankerite veins.	Bowersox and Chamberlin, 1995;		
		Panjshir Valley emerald mines in an area 8 by	Abdullah and others, 1977; Kazmi		
		40 km. Bowersox and Chamberlin give 2	and Snee, 1989; Bowersox, 1985;		
Darun		locations; 2nd is 35-29-15N, 69-54-15E.	Bowersox and others, 1991	35.433	69.983
	Speculative reserves:		ESCAP, 1995; Abdullah and		
	20 Mt @ 21.7-38.5%	16 coal beds 0.68-3.60 m thick. Largely	others, 1977; Afzali, 1981;		
Darwaza	ash	coking coal.	Bowersox and Chamberlin, 1995	35.667	67.383
		Although reported in Oruzgan Province,			
		latitude-longitude is in Jowzjan.			
		Hydrothermally altered zone 860 m long and 2	Abdullah and others, 1977;		
Darwaza	0.34% Hg	10 m thick.	Bowersox and Chamberlin, 1995	33.909	65.980
	ž		Abdullah and others, 1977;		
Daryabghar		4 skarnified zones in roof pendant.	Bowersox and Chamberlin, 1995	32.456	66.583
		·	Abdullah and others, 1977;		
Dasht-i-Safed		Several gypsum beds.	Bowersox and Chamberlin, 1995	35.286	67.886
		A sulfur-bearing "celestine" bed, 1.0-1.5 m	Abdullah and others, 1977;		
Dasht-i-Safed		thick, is interbedded with other sediments.	Bowersox and Chamberlin, 1995	35.309	67.957
	1		1	1	I

	Synonym and Other	Deposit or									
Locality/Deposit Name		District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materia
							lacustrine brine,				
Dawlatabad			Faryab	36-36-15N	64-56-00E	Hal	evaporites	Deposit	Recent	salt lake deposits	halite
Dawrankhel			Kabol	34-24-00N	69-24-00E	Cu		Occurrence	Vendian-Cambrian;	; schist	spodumene, microcline, albite;
) og bo		Pachighram Pegmatite Field	Nament	35-38-33N	71-03-30E		noamatito	Occurrence	Carboniferous-Early Permian; Oligocene	cobiet, grapite	minor cassiterite, columbite- tantalite
Degha Deh Rarar*		Peginatite Field	Nangarhar Badakhshan	35-56-33N	70-28E	GEM Be	pegmatite	Occurrence	Permian; Ongocene	schist; granite	beryl
Dehe-Kolon			Parvan	35-13N	69-18E	Fe		Occurrence	Proterozoic		hematite
		Eshkashem									spodumene, cleavelandite,
Dehghal	Dekhgal	Pegmatite Field	Badakhshan	36-22N	71-27E	Li Sn	pegmatite	Occurrence	Late Triassic	slate	cassiterite
Deh-i-Sabz			Kabol	34-37N	69-25E	Fe		Occurrence	Permian	sediments	magnetite, hematite
Deh-Kepal Derik		Panjshir Valley	Kabol Kapisa	34-37-00N	66-04-30E	Cly GEM			Quaternary	clay	clay, hematite emerald
Dewoz			Nangarhar	35-01N	71-05E	Mica	pegmatite	Occurrence	Proterozoic	metamorphic rocks	muscovite
Dex Kenak			Kabol	34-35N	69-03E	Mbl	metasedimentary	Potential producer	Proterozoic	marble	marble
hray-Pech*			Nangarhar	34-50N	70-45E	GEM	j	·			aquamarine, tourmaline
Doab*			Bamian	35-22N	68-06E	Cu					
Dodi			Ghazni	33-08-30N	67-07-10E	Fe		Occurrence	Late Devonian	quartz sandstone	hematite
Dog-Galat	Dog-Glat		Badakhshan	37-07-35N	70-21-00E	Au		Occurrence	Early Carboniferous Late Cretaceous-	granodiorite	sulfides chalcopyrite, galena, pyrite,
									Paleocene; Middle-Late		chrysocolla, bornite, pyrite,
Dorushak	Dorushka		Zabol	32-10-40N	66-21-49E	Cu	skarn	Occurrence	Jurassic	diorite; limestone	hematite, magnetite, gold
Doshk			Ghowr	33-54N	63-49E	s	spring deposit	Showing			native sulfur
Doshk			Ghowr	33-55N	63-49E	Pb Zn		Occurrence	Lower Cretaceous	sandy-calcareous sediments	galena, sphalerite
Doz Dara			Kapisa	35-08N	69-24E	Fe	skarn	Occurrence	Proterozoic Paleogene; Vendian-	gneiss, marble	magnetite, garnet
Dozah-Dara			Badakhshan	37-24-30N	70-54-00E	Fe	skarn	Occurrence	Cambrian	granodiorite; sandstone	hematite, magnetite
Drumgal	Drumahal	Parun Field	Name :	35-19-08N	71-01-21E	Li Ta Nb	noamatito	D	Late Triassic	slate	spodumene, beryl, columbite, tantalite, microcline, albite
Drumgal	Drumghal	Parun Fleid	Nangarhar	35-19-U8IN	/1-U1-21E	LI IA ND	pegmatite	U	Late massic	state	tantaille, microcline, aibite
Du-Berodar			Herat	34-08N	61-05E	Cu	disseminated	Occurronco	Early-Middle Jurassic; Eocene-Oligocene	sandstone: granite	
Du-Beloual			пегаг	34-UON	01-USE	Cu	disseriiriated	Occurrence	Eocene-Oligocene	porphyry	
Duaba			Farah	32-56-45N	63-50-50E	Hg	hydrothermal	Occurrence	Early Cretaceous;	; diorite porphyry dikes	cinnabar
					22 23 332	-9	,		, 1.1.100040,	, priji j antos	
								Small active			
Dudkash	Dudkach		Baghlan	36-01-00N	68-46-35E	COA	metasedimentary	producer	Late Jurassic		coal
Oudkash*			Baghlan	35-26N	68-50E	COA		טן		<u> </u>	coal

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
			Abdullah and others, 1977;		
			ESCAP, 1995; Bowersox and		
Dawlatabad	92.7% NaCl		Chamberlin, 1995	36.604	64.933
		Cu-bearing zone, 500 m long and 5-8 m thick,			
		at contact of Vendian-Cambrian rocks and	Abdullah and others, 1977;		
Dawrankhel	1.1% Cu	schist.	Bowersox and Chamberlin, 1995	34.400	69.400
			ESCAP, 1995; Abdullah and		
		Lenticular pegmatite dikes 100-150 m long	others, 1977; Bowersox and		
Degha		and 1.0-2.5 m thick.	Chamberlin, 1995	35.643	71.058
Deh Rarar*			Bowersox and Chamberlin, 1995	35.950	70.467
		Hematite body 3000 m long and 10-20 m	Abdullah and others, 1977;		
Dehe-Kolon		thick.	Bowersox and Chamberlin, 1995	35.217	69.300
			Rossovskiy and others, 1976b;		
			Abdullah and others, 1977;		
Dehghal			Bowersox and Chamberlin, 1995	36.367	71.450
		Magnetite-hematite bodies that are 10-20 m	Abdullah and others, 1977;		
Deh-i-Sabz		long and 1-2 m thick.	Bowersox and Chamberlin, 1995	34.617	69.417
	Speculative 2.3 Mm ³		Abdullah and others, 1977;		
Deh-Kepal	to 5 m depth (1977)	For bricks.	Bowersox and Chamberlin, 1995	34.617	66.075
Derik			Bowersox and Chamberlin, 1995		
		Pegmatite dikes 80-100 m long and 2-3 m			
		thick. Muscovite crystals up to 20 x 30 cm in	Abdullah and others, 1977;		
Dewoz		size.	Bowersox and Chamberlin, 1995	35.017	71.083
			Abdullah and others, 1977;		
Dex Kenak			Bowersox and Chamberlin, 1995	34.583	69.050
Dhray-Pech*			Bowersox and Chamberlin, 1995	34.833	70.750
Doab*		0 1 11 (000	Bowersox and Chamberlin, 1995	35.367	68.100
D-4:	2F 200/ F-	Quartz sandstone bed is 6000 m long, up to	Abdullah and others, 1977;	22 1 42	/7 110
Dodi	25-30% Fe	15 m thick, and cemented by hematite.	Bowersox and Chamberlin, 1995	33.142	67.119
		5 small gold-bearing areas in a 40 km2 zone.	Abdullah and others, 1977;		
Dog-Galat		Au is in fissures and thin quartz veinlets.	Bowersox and Chamberlin, 1995	37.126	70.350
Dog-Galat		Au is ill lissules and thin qualitz veinlets.	Bowersox and Chamberlin, 1995	37.120	70.330
		Mineralization in skarn and in skarnified rocks	Abdullah and others, 1977;		
Dorushak		within shear zone.	Bowersox and Chamberlin, 1995	32.178	66.364
Dordonak		A sulfurous spring forms a pond (14 x 20 m)	Develope and chambering 1776	02.170	00.001
		surrounded by unconsolidated rocks rich in	Abdullah and others, 1977;		
Doshk		sulfur.	Bowersox and Chamberlin, 1995	33.900	63.800
		Quartz veinlets in shear zone 700 m long and	Abdullah and others, 1977;		
Doshk		20-40 m thick.	Bowersox and Chamberlin, 1995	33.917	63.817
		Skarnified marble bed is 5000-6000 m long	Abdullah and others, 1977;		
Doz Dara		and 1-5 m thick.	Bowersox and Chamberlin, 1995	35.133	69.400
			Abdullah and others, 1977;		
Dozah-Dara		Hematite-magnetite lens in roof pendant.	Bowersox and Chamberlin, 1995	37.408	70.900
			ESCAP, 1995; Rossovskiy and		
			Shmakin, 1978; Rossovskiy and		
	Speculative 0.253 Mt		others, 1976b; Abdullah and		
	Li₂O to 100 m depth	3 pegmatite dikes 1000-2000 m long and 7-30			
Drumgal	(1974); 1.38-1.58% Li ₂ O		Chamberlin, 1995	35.319	71.023
		Cu disseminations and films in 2 areas: one			
		area is 700 x 300 m in size; second area is	Abdullah and others, 1977;		
Du-Berodar		1000 x 300 m.	Bowersox and Chamberlin, 1995	34.133	61.083
		Hydrothermally altered carbonate zone (160 m			
		long and 0.5-1.0 m thick) with veinlets and			
Duaba		disseminations of cinnabar.	Abdullah and others, 1977	32.946	63.847
		Irregular coal seam 0.2-10 m thick; workings	500AB 4005 AL LULL :		
	0 1 11	expose bed for 500 m downdip and 900 m	ESCAP, 1995; Abdullah and		
		along strike. Coal is dull, laminated,	others, 1977; Afzali, 1981;		
Dudkash	Mt @ 26.89% ash	metamorphosed.	Bowersox and Chamberlin, 1995	36.017	68.776
İ		Bowersox and Chamberlin (1995) gave			
DII		longitude as 57-50E which is incorrect; 68-50E	D	05 400	(0.000
Dudkash*		places in Baghlan Province.	Bowersox and Chamberlin, 1995	35.433	68.833

	Synonym and Other	Deposit or									
Locality/Deposit Name		District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Dudkash			Baghlan	36-00-47N	66-47-20E	Dol, Lst?	sedimentary	Occurrence	Early Cretaceous	dolomite, siltstone, limestone, gypsum	dolomite, marl?
Dudkash			Baghlan	36-00-40N	69-46-00E	Lst		7	Jurassic	clay, siltstone, limestone	
Dualiasii			Baginan	00 00 1011	07 10 002				sarassio	clay, siltstone,	Imiestorio
Dudkash			Baghlan	36-00-55N	68-47-30E	Gyp	evaporite	Occurrence Active producer	Late Jurassic	sandstone, dolomite	gypsum
Dul-i-Khumry			Baghlan			Lst	sedimentary	(1995)		limestone	
Durbas			Farah	32-50N	63-13E	Ва		Occurrence	Eocene-Oligocene	andesite porphyry, sandstone	barite
Durbas II			Farah	32-51N	63-12E	Cu	hydrothermal	Occurrence	Oligocene	dacite porphyry	
Durnama			Kapisa	35-30N	69-51E	Fe		Occurrence	Proterozoic	marble	hematite
Dusar			Herat	33-43N	61-17E	Cu	shear zone	Occurrence	Late Jurassic-Early Cretaceous;	greenstone volcanics; diabase, gabbro	pyrite
Duwalak			Ghowr	33-27-22N	64-38-45E	Hg		Occurrence	Early Cretaceous	siltstone, mudstone, sandstone, limestone.	
Dynamitic			Ghazni	32-54-38N	67-41-01E	Au		Occurrence	Middle Triassic	limestone	
East Eshpushta			Baghlan	35-18-37N	68-06-02E	Cly		Occurrence	Middle to Late Triassic	innestone	kaolin
Eastern Garmak			Samangan	35-43-40N	67-21-05N	COA	sedimentary	Occurrence	Early to Middle Jurassic		coal
Ekrak			Zabol	32-30-57N	66-40-10E	Au Cu	skarn	Occurrence	Oligocene; Ordovician	granite; limestone	hematite, magnetite, pyrite, chalcopyrite, covellite, bornite, gold
Elbura*			Jowzjan or Balkh		66-43E	S				5	sulfur
Eshon			Badakhshan	36-58-54N	72-38-53E	Fe		Occurrence	Oligocene	diorite, granodiorite	hematite, chalcopyrite
Eshpushta	Ishpushta	Darrah-i-Suf coal district	Baghlan	36-19-37N	68-05-29E	COA	sedimentary	Past production	Early to Middle Jurassic		
Eshpushta			Baghlan	35-18-32N	68-04-50E	Cu	skarn	Occurrence	Middle-Late Triassic	sandstone, gritstone, conglomerate	chalcopyrite, pyrite, arsenopyrite, sphalerite, molybdenite
Eskan			Oruzgan	33-45N	66-47E	Pb Zn Sn	shear zone	Occurrence	Oligocene	granitic rocks	
Esnpushta			Baghlan	35-18-44N	68-06-22E	AI	residual weathering	Occurrence	Late Triassic	volcanics	bauxite
Espesang				34-43N	64-36E	Fe		Occurrence	Proterozoic	diorite-gabbro, other unspecified rocks	galena, sphalerite, pyrite, chalcopyrite, chalcocite
Esshni			Parvan	35-04N	69-36E	Mica		Occurrence	Proterozoic	gneiss	muscovite
Estoma				34-26-08N	68-11-16E	Al	residual weathering	Occurrence	Jurassic; Late Triassic	carboniferous rocks; volcanics	bauxite
Estoma			Baghlan	35-25-24N	68-09-42E	COA	sedimentary	Occurrence	Early to Middle Jurassic	clay	coal
Faraghard			Parvan	34-58-30N	68-52-30E	COA	sedimentary	Active Small producer (1977)	Paleogene	sandstone	coal
Farah-I			Farah	32-11-50N	62-16-30E	w	skarn, breccia	Occurrence	Early Cretaceous; Late Cretaceous-Paleocene	limestone; granosyenite	scheelite, hematite, chalcopyrite

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
			Abdullah and others, 1977;		
		Dolomite for flux. 3.9 m thick bed of dolomite	ESCAP, 1995; Bowersox and		
Dudkash		with gypsum nodules.	Chamberlin, 1995	36.013	68.789
			Abdullah and others, 1977;		
Dudkash		Suitable for cement.	Bowersox and Chamberlin, 1995	36.013 36.013 36.015 32.833 32.850 35.500 33.717 33.456 32.911 35.310 35.728 32.516 36.617 36.982 36.327 35.309	69.767
			Abdullah and others, 1977;		
		Gypsum beds up to 12,000 m long and 1.5-6.0			
Dudkash	99.37% gypsum	m thick. Gypsum is dense and white.	Chamberlin, 1995	36.015	68.792
Dul-i-Khumry	>1000 Mt	For cement	ESCAP, 1995		
Dui-i-Kilailii y	> 1000 IVIT	Numerous barite veins at intersection of North-			
Durbas		South and East-West faults.	Bowersox and Chamberlin, 1995	32 833	63.217
Daibas		Hydrothermally altered zones 3000-5000 m	Better sex and enaminering 1776	02.000	00.217
	0.01-0.3% Cu; <0.07%	long and 20-200 m thick contain Cu and lesser	Abdullah and others, 1977;		
Durbas II	Zn	Zn.	Bowersox and Chamberlin, 1995	32.850	63.200
		Several hematite lenses 10-60 m long and 1-5	Abdullah and others, 1977;		
Durnama		m thick.	Bowersox and Chamberlin, 1995	35.500	69.850
		Fault zone (2200 m long, 30-150 m wide, 2.0-			
	0.0404.0	7.2 m thick) has numerous gossans containing			
Dusar	0.06% Cu; <0.05% Zn	Cu and lesser Zn.	Bowersox and Chamberlin, 1995	33.717	61.283
		3 mineralized bodies in 2 NE-striking zones of	Abdullah and others, 1977; ESCAP, 1995; Bowersox and		
Duwalak	0.07-0.72% Hg	fractured and brecciated sediments.	Chamberlin, 1995	22.454	64.646
Duwaiak	0.07-0.72 % Hg	mactured and brecciated sediments.	Abdullah and others, 1977;	33.430	04.040
Dynamitic		Au in ferruginous, brecciated zones.	Bowersox and Chamberlin, 1995	32 911	67.684
D J Harrintio		Kaolin zone up to 500 m long and 20-25 m	Better sex and enaminering 1776	02.711	07.001
East Eshpushta		thick.	Abdullah and others, 1977	35.310	68.106
•		3 coal beds 1.12-1.55 m thick. Appear			
		suitable for production (Abdullah and others,	Abdullah and others, 1977;		
Eastern Garmak		1977).	Bowersox and Chamberlin, 1995	35.728	67.351
F		Mineralized bodies are 10-60 m long and 1-4	Abdullah and others, 1977;	00.547	,,,,,
Ekrak		m thick.	Bowersox and Chamberlin, 1995	32.516	66.669
Elbura*			Bowersox and Chamberlin, 1995	26 617	66.717
Elbula			Bowersox and Chamberlin, 1995	30.017	00.717
		Hematite bodies 1.5-2.0 m long and up to 0.2	Abdullah and others, 1977;		
Eshon		m thick at contact of diorite and granodiorite.	Bowersox and Chamberlin, 1995	36.982	72.648
		g	ESCAP, 1995; Abdullah and		
	Speculative reserves:	5 coal beds 1.5-3.8 m thick. Past production	others, 1977; Afzali, 1981;		
Eshpushta	2.5 Mt @ 2.5-41.3% ash	is 12,500 t/y.	Bowersox and Chamberlin, 1995	36.327	68.091
		Skarns, 30-200 m long and up to 2 m thick,	Abdullah and others, 1977;		
Eshpushta		occur in sedimentary sequence.	Bowersox and Chamberlin, 1995	35.309	68.081
		Ferruginous tectonic zone contains quartz	Abdullah and others 1077		
Eskan		veinlets and base-metal mineralization over an area 300 m long and 25 m thick.	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	33 750	66.783
LSKall		Bauxite body is 300-400 m long and 1-3 m	Abdullah and others, 1977;	33.730	00.763
Esnpushta		thick.	Bowersox and Chamberlin, 1995	35.312	68.106
. p	<u> </u>	Fault zone with strong iron mineralization is	Abdullah and others, 1977;	55.512	3300
Espesang		3000 m long and 50 m thick.	Bowersox and Chamberlin, 1995	34.717	64.600
		Over 30 pegmatite dikes; 3 with highest			
		muscovite concentration are 40-100 m long	Abdullah and others, 1977;		
Esshni		and 1-10 m thick.	Bowersox and Chamberlin, 1995	35.067	69.600
		4 tabular bauxite bodies up to 70 m long and	Abdullah and others, 1977;		
Estoma		4 m thick.	Bowersox and Chamberlin, 1995	34.436	68.188
- .		5.45	Abdullah and others, 1977;	05 :00	
Estoma	 	Coal seams 5-15 cm thick.	Bowersox and Chamberlin, 1995	35.423	68.162
Faranhard		Coal seams 0.40 m thick; worked for local needs.	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	34.975	68.875
Faraghard	1	necus.		34.973	00.075
			Abdullah and others, 1977		
		2 brecciated zones: 200 m long by 100 m	Abdullah and others, 1977; ESCAP, 1995; Afzali, 1981;		

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Farah-II			Farah	32-14-30N	62-18-00E	W Cu	skarn, breccia	Occurrence	Early Cretaceous; Late Cretaceous-Paleocene	terrigenous carbonate rocks; granite	scheelite, hematite, pyrite, chalcopyrite
Farah-II*			Farah	33-18N	64-13E	Cu		Occurrence			
Farenjal			Parvan	34-59N	68-41E	Ba Pb Zn Mn	hydrothermal?, sedimentary?	Past ancient production, D	Ordovician or L. Carboniferous	limestone	barite, sphalerite, galena, pyrite, marcasite, quartz, mercury, gold
Farenjal			Parvan	34-59N	68-41E	Mn Co Ni	sedimentary serpentine-hosted	Occurrence			pyrolusite, psilomelane, Fe oxides
Farenjal			Parvan	34-59N	68-41E	Asb Tlc	asbestos	Occurrence	; Early Carboniferous	serpentinite; schist	chrysotile, talc
Farkhar			Takhar	36-37-51N	69-43-16E	COA		Occurrence	Late Jurassic		coal
Farkhar Feranjal*			Takhar Parvan	36-02N to 36- 36-30N 35-10N	69-49-30E to 69-51-00E 68-50E	Si Pb Zn	sedimentary	Occurrence	Early Carboniferous	siltstone, sandstone, slate	silica sand, sandstone
Firgamu (see Jurm)							serpentine-hosted				
Frontier-Side	Frontierside		Paktia	32-35N	69-22E	Asb	asbestos	Occurrence	Eocene	ultrabasic	asbestos
Furmarah	Furmorah, Furmahah, Furmarak		Badakhshan	37-05-30N	70-49-55E	Fe	metasedimentary, skarn?	Deposit, D	Early Carboniferous	sandstone, limestone	magnetite
Furmorah I			Badakhshan	37-05-10N	70-50-20E	Au Cu Fe As	skarn	Occurrence	Oligocene; Late Permian- Late Triassic	granite; sandstone, limestone	
Futur Gandamak*		Eshkashem Pegmatite Field	Badakhshan	36-38N	71-39E	Li Ta Sn Be Nb	pegmatite	Occurrence Active mine (1995)	Late Triassic	slate	spodumene, quartz, microcline, albite, tourmaline, cassiterite, columbite-tantalite ruby
Ganighay			Oruzgan	32-23N	65-53E	F	vein?	Occurrence	Late Triassic; Middle - Late Jurassic	limestone; sandy limestone	fluorite, chalcedony
Garangh	Gharang		Zabol	32-21N	66-35E	Au Cu	skarn	Small past producer (1977)	Vendian-Cambrian; Late Cretaceous-Paleocene	limestone; diorite	chalcopyrite, chalcocite, pyrite, native gold
Gardani-Burida	Gardin-burida		Herat	35-20-25N	61-25-00E	Ва		Occurrence	Paleogene	sediments	barite
Gardesh			Oruzgan	34-06N	66-19E	Hg	hydrothermal	Occurrence	Early Cretaceous	sandstone, siltstone, limestone	cinnabar
Gariba			Farah	33-18N	64-13E	Cu Pb Zn	skarn	Occurrence	Early Cretaceous; Late Cretaceous-Paleocene	limestone; diorite	chalcopyrite, galena, sphalerite, pyrite
Gawmazar I & II			Ghowr	34-15-45N	64-37-06E	Pb Zn	shear zone	Occurrence	Late Triassic	slate	
Gawmazar III			Ghowr	34-16N	64-38E	Pb Zn	shear zone	Occurrence	Late Permian	slaty-arenaceous sediments	
Gawmazar IV			Ghowr	34-16-36N	64-38-00E	Pb Zn	shear zone	Occurrence	Carboniferous-Early Permian	silicified, ferruginous rocks	
Gazoghel			Baghlan	35-34-00N	68-50-40E	Cu		Occurrence	Late Triassic	acid volcanics	gypsum
Gazoghel I			Baghlan	35-32N	68-50E	Cu	shear zone	Occurrence	Late Triassic	volcanics, slate	magnetite ludui-it- disi
Gbarghey	Ghbargei		Kandahar	32-13N	65-42E	Cu Bi Sn	skarn	Occurrence	Late Triassic; Oligocene	dolomite, limestone; granite	magnetite, ludwigite, diopside, garnet, pyrite, chalcopyrite
Gerdab			Nangarhar	34-23N	70-43E	Asb	serpentine-hosted asbestos	Occurrence	Early Carboniferous	ultrabasic plug	asbestos

				Decimal Latitude	Decimal Longitude
			Abdullah and others, 1977;		
	0.10-0.68% WO ₃ , 0.01-	Disseminated mineralization in skarn and	ESCAP, 1995; Afzali, 1981;		
	1.46% Cu	hornfels.	Bowersox and Chamberlin, 1995	32.242	62.300
		Location matches "Gariba", a Cu-Pb-Zn			
Farah-II*		occurrence listed elsewhere in table.	Bowersox and Chamberlin, 1995	33.300	64.217
			Abdullah and others, 1977;		
		There are 16 fine-grained barite bodies in the	Chmyriov and others, 1973;		
	0.209 Mt @ 83.7%	area. Mineralization is controlled by shear	ESCAP, 1995; Jankovic, 1984;		
Farenjal	BaSO ₄	zones.	Bowersox and Chamberlin, 1995	34.983	68.683
		500 m W of the Farenjal barite deposit. Mn			
	28-30% Mn oxide,	outcrop is 120 m long, and 3 m thick with 20-	Chmyriov and others, 1973;		
	0.03% Co, 0.01-0.30%	40% pyrolusite, 50-70% psilomelane, 2-3% Fe	ESCAP, 1995; Abdullah and		
Farenjal	Ni	oxides.	others, 1977	34.983	68.683
		V : 0 61 1 1	Abdullah and others, 1977;	0.4.000	10 100
Farenjal		Veins. Cross fiber asbestos.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977:	34.983	68.683
F-ald		CI i- 1/ thi-I-	Bowersox and Chamberlin, 1995	27 721	(0.701
Farkhar		Coal seam is 16 cm thick. Two sandstone beds 1.2-8.0 km long and 50-	Abdullah and others, 1977;	36.631	69.721
		120 m wide. Suitable for dinas brick, furnace	ESCAP, 1995; Bowersox and	36.033 to	69.825 to
Farkhar	95.66-97.31% SiO ₃	facing.	Chamberlin, 1995	36.500	69.850
Feranjal*	75.00-77.5176 5102	lacing.	Bowersox and Chamberlin, 1995	35.167	68.833
Firgamu (see Jurm)			Dowersox and Chamberlin, 1773	33.107	00.033
ringama (see sami)		Asbestos veinlets in calcareous serpentinite	Abdullah and others, 1977;		
Frontier-Side		fissures in a 10 m thick zone.	Bowersox and Chamberlin, 1995	32.583	69.367
	Speculative: 35 Mt @		Chmyriov and others, 1973;		
	47.2-67% Fe, 0.02-	Deposit is tabular, massive magnetite body up	ESCAP, 1995; Abdullah and		
	0.03% S, up to 0.01%	to 1000 m long and 2-35 m thick. Associated	others, 1977; Afzali, 1981;		
Furmarah	Ni, up to 0.10% Mn	with intrusives of the Shewa complex.	Bowersox and Chamberlin, 1995	37.092	70.832
	•	Garnetiferous skarns occur at contact of			
		granite with sediments over an area of 80 km ² .			
		Au is also found in limonitic lenses away from			
		the contact and, at 5 km distance, in quartz-	Abdullah and others, 1977;		
Furmorah I		sulfide veins.	Bowersox and Chamberlin, 1995	37.086	70.839
			Abdullah and others, 1977;		
		Five pegmatite dikes 200-300 m long and 2-15			
	10-30% spodumene	m thick.	Bowersox and Chamberlin, 1995	36.633	71.650
Gandamak*		E.I	Bowersox and Chamberlin, 1995		
		Foliated, vein-type occurrence over 1000 m	Abdullah and others, 1977;	00.000	/ F 000
Ganighay		long and 5-8 m thick. Skarnified and serpentinized zone with	Bowersox and Chamberlin, 1995	32.383	65.883
		mineralization is 250 m long and up to 3 m	Abdullah and others, 1977;		
Garangh		thick.	Bowersox and Chamberlin, 1995	32.350	66.583
Garanyii		5 barite-bearing bodies, 5-20 m long and 0.2-	Abdullah and others, 1977;	32.350	00.363
Gardani-Burida		0.6 m thick.	Bowersox and Chamberlin, 1995	35.340	61.417
Caracin Dana		Veinlets and disseminations of Hq in dickitized	25.00.55X drid Oridinocrini, 1775	33.340	31.417
Gardesh		sediments.	Abdullah and others, 1977	34.100	66.317
			Abdullah and others, 1977;		
Gariba		Disseminated sulfide mineralization in skarn.	Bowersox and Chamberlin, 1995	33.300	64.217
		Mineralized shear zones 100 m long and 1.5-	Abdullah and others, 1977;		
Gawmazar I & II		5.0 m thick.	Bowersox and Chamberlin, 1995	34.263	64.618
		Small mineralized and silicified shear zone, 1			
Gawmazar III		m x 50 m.	Bowersox and Chamberlin, 1995	34.267	64.633
		Mineralized shear zone 100 m long and 3-10	Abdullah and others, 1977;		
Gawmazar IV		m thick.	Bowersox and Chamberlin, 1995	34.277	64.633
		Volcanics are limonitic and bleached with			
		gypsum; area is up to 8000 m long along	Abdullah and others, 1977;		
Gazoghel		strike and up to 600 m thick.	Bowersox and Chamberlin, 1995	35.567	68.844
		Ferruginous fault zone 500 m long and 150-	Abdullah and others, 1977;		
		300 m thick contains Cu mineralization.	Bowersox and Chamberlin, 1995	35.533	68.833
Gazoghel I	0 11 40.000				
-	Speculative 10,000-	0 45 45	Abdullah and others, 1977;		
-	Speculative 10,000- 12,000 t Cu (1971)	Skarn zone 1-15 m thick. Slip fiber asbestos veins up to 10 m long and	Abdullah and others, 1977; Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	32.217	65.700

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Gezak			Kabol	34-33-30N	69-27-00E	Mbl	metasedimentary	Occurrence	Proterozoic	marble, limestone	marble
Gezghay			Kabol	34-17-10N	69-21-50E	Fe		Occurrence	Proterozoic	schist, quartzite	
Gezghaz			Kabol	34-18N	69-22E	Cu	veins	Occurrence	Vendian-Cambrian	marble, calcareous schist	covellite, chalcocite, chrysocolla
Ghala-i-Assad			Kandahar	32-05N	65-28E	Fe	skarn?	Occurrence	Oligocene; Late Triassic	granite; limestone	martite, magnetite
Gharghanaw II & III			Ghowr	34-13N	64-33E	Pb Zn	shear zones	Occurrence	Early to Middle Jurassic	calcareous, slaty bed	
Gharwazi I			Kabol	34-22-10N	69-19-30E	Cu		Occurrence	Vendian-Cambrian	slate	
Ghuch			Badakhshan	38-25N	71-06E	SDG		Active?	Recent	alluvium	sand and gravel
Ghuldarra I			Kabol	34-23-53N	69-18-20E	Cu		Occurrence	Vendian-Cambrian	marble	covellite, chalcopyrite, chalcocite, malachite
Ghuldarra II			Kabol	34-24-25N	69-15-35E	Cu		Occurrence	Vendian-Cambrian	marble	
Ghumay			Badakhshan	38-08-30N	71-15-30E	Lst		Active producer (1977)	Permian Late Cretaceous-	limestone, dolomite	limestone, dolomite
Ghumbad			Zabol	32-11-15N	66-23-22E	w	skarn	Occurrence	Paleocene; Middle to Late Jurassic	diorite; marble	pyrite, chalcopyrite, "molybdoscheelite", garnet
Ghunday			Nangarhar	34-11N	70-01E	TIc Mg	hydrothermal	Small Intermittent producer (1995)	Proterozoic;	marble; gabbro-diabase	talc
Ghuri-Safed			Farah	32-56N	61-06E	Cu	shear zone/vein	Occurrence	Eocene-Oligocene	andesite porphyry	malachite, azurite
Ghurma	Includes Eastern and Western areas		Farah	33-42N	63-18E	Cu		Occurrence	Oligocene: Eocene- Oligocene	granite; volcanic rocks	chalcopyrite, pyrite, siderite
Ghursalak	Gursalak		Nangarhar	34-57-15N to 34-57-45N	70-43-55E to 70-44-55E	Be Ta Nb Sn	pegmatite	Occurrence	Early Cretaceous	gabbro, diorite	beryl, columbite-tantalite, cassiterite
Ghury-Sang			Baghlan	35-46N	69-24E	Cu	veins	Occurrence	Middle-Late Triassic	volcanoclastics	chalcopyrite, pyrite, bornite
Gizaw			Oruzgan	33-23-20N	66-17-09E	COLL Ca		Occurrence	Late Triassic	limestone	calcite
Glick			Badakhshan	37-21-25N	71-00-35E	Cu	hydrothermal	Occurrence	Late Permian - Triassic	limestone	
Godo-China			Kabol	34-40N	69-40E	Cu Pb Zn	veins	Occurrence Small past producer	Oligocene	granite	chalcopyrite malachite, covellite, chalcocite,
Gologha I	Gologha		Farah	33-21N	61-21E	Cu Pb Zn	breccia	(1977)	Eocene-Oligocene	andesite	pyromorphite
Gudry-Mazar			Bamian	33-55N	67-27E	Pb Zn	skarn	Occurrence	Oligocene; Middle Triassic	granite; dolomite	
Gugirt	Gugit, Curgit		Bamian	34-10N	67-01E	S	hydrothermal, disseminated	Occurrence	Proterozoic	schist	native sulfur
Gulbina	Ghulbina		Bamian	34-03N	67-36E	W Cu Sn	skarn	Occurrence	Oligocene; Proterozoic	granite; carbonates calcareous sediments,	scheelite, chalcopyrite, malachite
Gulgadam			Oruzgan	33-51-26N	65-11-50E	Hg	hydrothermal	Occurrence	Early Cretaceous;	siltstone; diorite porphyry dikes	
0.11			Parvan	35-06-30N	69-40-00E	Mica	pegmatite	Occurrence	Proterozoic	gneiss	muscovite, quartz
Gulin						4	1			,	

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
			Abdullah and others, 1977;		
Gezak			Bowersox and Chamberlin, 1995	34.558	69.450
COLUN		Ferruginous quartzite beds 150-200 m long	Abdullah and others, 1977;	01.000	07.100
Gezghay		and up to 10 m thick.	Bowersox and Chamberlin, 1995	34.286	69.364
<u> </u>		Small area of quartz veins and veinlets with	Abdullah and others, 1977;		
Gezghaz		disseminated Cu minerals.	Bowersox and Chamberlin, 1995	34.300	69.367
			Abdullah and others, 1977;		
Ghala-i-Assad	Speculative 0.1 Mt Fe	Fe bodies 10 by 100 m in size.	Bowersox and Chamberlin, 1995	32.083	65.467
01 1 11 0 111		2 parallel shear zones, 200-300 m apart, are	Abdullah and others, 1977;	04.047	(4.550
Gharghanaw II & III		50-100 m long and 5-20 m thick. Cu-bearing zone in slate is 100-150 m long	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	34.217	64.550
Gharwazi I	about 1.3% Cu	and up to 8 m thick.	Bowersox and Chamberlin, 1995	34.369	69.325
Orial Wazi i	Speculative 25 Mm ³	and up to 6 m thick.	Abdullah and others, 1977;	34.307	07.323
Ghuch	(1977)	A 65 m high terrace on the Panj River.	Bowersox and Chamberlin, 1995	38.417	71.100
Onden	(1777)	A 05 III nigit terrace on the Fanj River.	Dowersox and Chamberlin, 1995	30.417	71.100
		2 zones with disseminated Cu mineralization.			
		One zone is 1000 m long and 25-35 m thick;	Abdullah and others, 1977;		
Ghuldarra I		the other is 450 m long and 10-80 m thick.	Bowersox and Chamberlin, 1995	34.398	69.306
		A mineralized zone 30-50 m long and 2-5 m	Abdullah and others, 1977;		
Ghuldarra II		thick occurs in marble.	Bowersox and Chamberlin, 1995	34.407	69.260
			Abdullah and others, 1977;		
Ghumay		Suitable for dolomitic lime and construction.	Bowersox and Chamberlin, 1995	38.142	71.258
			41 1 11 1 11 4077		
Chh - d		Character to E00 as long and 1.10 as thick	Abdullah and others, 1977;	22.100	// 200
Ghumbad		Skarns up to 500 m long and 1-10 m thick. Lenses are in a 2000 m long zone and are >50	Bowersox and Chamberlin, 1995	32.188	66.389
	Speculative: 0.125 Mt;	m long and 0.5-1.0 m wide. Over 50,000 t	1977: Bowersox and Chamberlin.		
Ghunday	50-96% talc (1995)	have been mined.	1995	34.183	70.017
onunday	30 70% tale (1773)	Quartz and guartz calcite veinlets with films of	Abdullah and others, 1977;	34.103	70.017
Ghuri-Safed		Cu minerals.	Bowersox and Chamberlin, 1995	32.933	61.100
		Mineralization along contact of granite and	Abdullah and others, 1977;		
Ghurma		volcanics.	Bowersox and Chamberlin, 1995	33.700	63.300
		Dikes 600-700 m long and 0.3-4 m thick at	Abdullah and others, 1977;	34.954 to	70.732 to
Ghursalak		contact of gabbro and diorite.	Bowersox and Chamberlin, 1995	34.963	70.749
		Quartz veins and veinlets contain Cu minerals	Abdullah and others, 1977;		
Ghury-Sang	0.44-9.87% Cu	and occur over an area of about 1 km2.	Bowersox and Chamberlin, 1995	35.767	69.400
Gizaw		Semi-transparent calcite.	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	33.389	66.286
GIZdW		Hydrothermally-altered area is up to 5000 m	Abdullah and others, 1977;	33.369	00.200
Glick	up to 1% Cu	long and 150 m wide.	Bowersox and Chamberlin, 1995	37.357	71.010
Official	up to 170 ou	Shear zone, 150-200 m long and 5-10 m wide,	Bowersox and chambernin, 1775	37.337	71.010
		contains guartz veins and disseminated	Abdullah and others, 1977;		
Godo-China		copper.	Bowersox and Chamberlin, 1995	34.667	69.667
		Brecciated zone with Cu mineralization.	Abdullah and others, 1977;		
Gologha I		Ancient workings present.	Bowersox and Chamberlin, 1995	33.350	61.350
-			Abdullah and others, 1977;	1	
Gudry-Mazar		Small mineralized skarns.	Bowersox and Chamberlin, 1995	33.917	67.450
		Brecciated rock cemented by yellow-gray sulfur			
		with small lenses 1-3 m long composed of pure			
Gugirt	20.65-38.9% S (1973)	crystalline sulfur.	Chamberlin, 1995 Abdullah and others, 1977; Afzali,	34.167	67.017
		Skarn zones over 200 m long and about 80 m	1981; Bowersox and Chamberlin,		
Gulbina		thick contain lenses of W-Cu-Sn mineralization.		34.050	67.600
Guibiild		thick contain lenses of w-cu-sit miller dization.	1775	34.050	07.800
		Diorite porphyry dikes have veinlets, films, and	Abdullah and others, 1977		
Gulgadam		disseminations of Hg.	Bowersox and Chamberlin, 1995	33.857	65.197
		Numerous pegmatite dikes one is up to 100		22.307	22.177
		m long and 3.5-4.0 m thick; muscovite is		1	
		concentrated along perimeter of the quartz	Abdullah and others, 1977;		
Gulin		core.	Bowersox and Chamberlin, 1995	35.108	69.667
		8 barite veins, 15 barite-calcite veins, and 2	Abdullah and others, 1977;		
Gulron		calcite veins along a fault zone.	Bowersox and Chamberlin, 1995	34.858	61.733

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Culvakhal			Chazni	22 F2 1FN	47.41.20E	۸	akarn	Occurrence	Late Jurassic; Late	limestano, diorita	chalcopyrite, magnetite, bornite,
Gulyakhel			Ghazni	32-53-15N	67-41-20E	Au	skarn	Occurrence	Cretaceous-Paleocene	limestone; diorite	covellite, pyrite
Gurghimayden	Gurghi Mayden		Lowgar	34-13-40N	69-22-00E	Cu	vein	Occurrence	Vendian-Cambrian	marble	malachite, chalcopyrite
										limestone, dolomite;	
Haji-Alam			Kandahar	32-18N	65-33E	Fe	skarns	Occurrence	Late Triassic; Oligocene	granite	magnetite
Hagigak	Hajigak Hajigat		Bamian	34-40-20N	68-03-45E	Ва	vein	Occurrence	Proterozoic	chlorita soricita schist	barite
Hagigak	Hajigak, Hajigat		Dallilali	34-40-20IN	00-U3-45E	Ба	veiii	Occurrence	Proterozoic	chlorite-sericite schist	barne
L											
Hagigak	Hajigak		Bamian	34-40N	68-04E	Si	sedimentary	Occurrence	Late Devonian	sandstone/quartzite	silica sand
Hagigak	Hajigak		Bamian	34-40-20N	66-04-00E	Lst	sedimentary		Late Devonian	limestone	limestone, marl
- 3 3	73						volcanosedimenta				
	Hajigak, Hajigat,						ry, hydrothermal-				hematite, magnetite, martite,
Hajigak Hajigak*	Hagigak		Bamian Bamian	34-40N 34-36N	68-04E 68-08E	Fe Pb Ag Dol Lst	metasomatic	Deposit, D	Proterozoic	ferruginous quartzite dolomite, limestone	hematite, siderite, pyrite dolomite, limestone
Harzar			Bamian	34-41-46N	68-09-12E	Fe		Occurrence	Proterozoic	greenschist	hematite, magnetite
Hasan Sansalaghay			Ghowr	34-14-08N	64-35-00E	Pb Zn	shear zone	Occurrence	Early-Middle Jurassic	limestone, sandstone	
Hazar			Parvan	35-12N	69-19E	Fe		Occurrence	Proterozoic;	gneiss, marble; diorite plugs	hematite, magnetite
							-1				pyrite, chalcopyrite, bornite,
Hazarbuz Heri Rud*			Zabol Ghowr	32-33-00N 34-21N	66-31-40E 64-14E	Cu Hal	skarns	Occurrence	Oligocene; Late Permian	granodiorite; limestone	garnet, epidote halite
Hesa-i-Bowum*			Parvan	35-29N	69-54E	Fe					
Hes-i-Awal*			Parvan	35-21N	69-46E	Cu					
Hezarak*			Nangarhar	34-04N	69-58E	Cr					chromite
Inshakhar			Nangarhar	35-13-56N	70-59-18E	Li	pegmatite	Occurrence	Late Triassic	slate	spodumene, microcline, albite
IIISHAKIM			Narigarriai	33-13-3014	70-37-10E	Ei	pegmatite	Occurrence	Late IIIassic	Siate	spoddinene, microcinie, aibite
Istrombi			Badakhshan	36-12-00N	70-46-30E	GRF	sedimentary?	Occurrence	Archean	marble, calciphyre	graphite, hematite, quartz
Jabel-us-Saraj	Jabel-ur-Saraj		Parvan	35-09-20N	69-16-30E	Mbl	metasedimentary	Active mine (1995)	Proterozoic	marble	marble, marl
Jaffur-Kalay			Kandahar	31-55-15N	65-38-17E	Au	vein	Occurrence	Eocene-Oligocene	volcanics, slate	
Jalalabad Jalraiz*			Nangarhar Vardak	34-28-00N 34-24N	69-27-30E 68-29E	Be Mica Pb Zn	pegmatite	Occurrence	Proterozoic; Oligocene	schist, gneiss; granite	beryl, muscovite
Jan aiz			varuak	54-24IN	00-27L	1 5 211					
								Past or intermittent			spodumene, microcline, albite,
Jamanak		Parun Field	Nangarhar	35-23-12N	70-59-06E	Li Rb Cs	pegmatite	Small producer	Late Triassic	schist, limestone	muscovite
Jamarchi- Bolo Quarry			Badakhshan	38-15-15N	71-21-10E	Lst	sedimentary	Intermittent producer	Silurian	limestone, marl	limestone, marl
·							Seulinemai y				
Janguzay I			Kabol	34-15-10N	69-23-10E	Cu		Occurrence	Vendian-Cambrian	amphibolite	malachite, azurite

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
		Mineralized skarns are 50-70 m long and 1.0-	Abdullah and others, 1977;		
Gulyakhel	up to 4.4 g/t Au	1.5 m thick.	Bowersox and Chamberlin, 1995	32.888	67.689
		Quartz vein, 30-40 m long and 2-3 m thick,			
C		contains malachite films and chalcopyrite	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	24 220	(0.2/7
Gurghimayden		impregnations.	Abdullah and others, 1977; Afzali,	34.228	69.367
	Speculative 2-6 Mt ore		1981: Bowersox and Chamberlin.		
Haji-Alam	@ 52.56-62.28% Fe	Calcareous skarns with irregular masses.	1995	32.300	65.550
,			Abdullah and others, 1977;		
			Chmyriov and others, 1973;		
Hagigak	36200 t barite		Bowersox and Chamberlin, 1995	34.672	68.063
			Abdullah and others, 1977;		
	0 1 11 0 (514)		Chmyriov and others, 1973;		
Hagigak	Speculative 0.65 Mt @	Cuitable for refrectory meterials	ESCAP, 1995; Bowersox and Chamberlin, 1995	34.667	68.067
пауіуак	95.5% SiO ₂ (1965)	Suitable for refractory materials. Limestone is 800-900 m long and 63.8 m	Abdullah and others, 1977;	34.007	66.067
	900m x 50 m area to	thick. Suitable for flux for metallurgical	ESCAP, 1995; Bowersox and		
Hagigak		industry.	Chamberlin, 1995	34.672	68.067
riagigak	Indicated 100 Mt @	This is the largest iron deposit in the Middle	Ondriberiii, 1775	34.072	00.007
		East and extends over 600 km. There are	ESCAP, 1995; Chmyriov and		
		primary and semi-oxidized ores. At least 16	others, 1973; Abdullah and others,		
Hajigak	68.68% Fe	orebodies; Most are small.	1977; Afzali, 1981	34.667	68.067
Hajigak*			Bowersox and Chamberlin, 1995	34.600	68.133
			Abdullah and others, 1977;		
Harzar		Fe lens is up to 70 m thick.	Bowersox and Chamberlin, 1995	34.696	68.153
		Mineralized shear zone 150 m long and 2.0 m	Abdullah and others, 1977;		
Hasan Sansalaghay		wide.	Bowersox and Chamberlin, 1995	34.236	64.583
		Hematite-magnetite "vein" 20 m long and 2.0-	Abdullah and others, 1977;		
Hazar		2.5 m thick. Skarns are 200 m long and 1.0-10.6 m thick	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	35.200	69.317
Hazarbuz		with disseminated Cu mineralization.	Bowersox and Chamberlin, 1995	32.550	66.528
Heri Rud*		with disserninated ou mineralization.	Bowersox and Chamberlin, 1995	34.350	64.233
Hesa-i-Bowum*			Bowersox and Chamberlin, 1995	35.483	69,900
Hes-i-Awal*			Bowersox and Chamberlin, 1995	35.350	69.767
Hezarak*			Bowersox and Chamberlin, 1995	34.067	69.967
			Rossovskiy and others, 1976b;		
		About 10 pegmatite dikes, 200-300 m long	Abdullah and others, 1977;		
Inshakhar	10-25% spodumene	and 2-5 m thick.	Bowersox and Chamberlin, 1995	35.232	70.988
			Abdullah and others, 1977;		
		Microcrystalline graphite lenses are 40-50 m	ESCAP, 1995; Bowersox and		
Istrombi	50-69% C	long and 10 m thick.	Chamberlin, 1995	36.200	70.775
			Abdullah and others, 1977; ESCAP, 1995; Bowersox and		
Jabel-us-Saraj		Use for cement. Marble is up to 450 m thick.	Chamberlin, 1995	35.156	69.275
Janei-us-Sai aj		Mineralized quartz veins. Largest is 120 m	Abdullah and others, 1977;	33.130	07.275
Jaffur-Kalay		long and 1.2 m thick.	Bowersox and Chamberlin, 1995	31.921	65.638
Januar Halay	3 areas of Be	iong and the mone	Bowerson and chambering 1776	01.721	00.000
	mineralization				
	associated with				
	pegmatites in an area 13-				
	14 km long and 2-3 km		Abdullah and others, 1977;		
Jalalabad	wide.		Bowersox and Chamberlin, 1995	34.467	69.458
Jalraiz*			Bowersox and Chamberlin, 1995	34.400	68.483
	29 Mt @ 1.53% Li ₂ O;		Abdullah and others, 1977;		
	Speculative 0.294 Mt		ESCAP, 1995; Rossovskiy and		
	LiO ₂ @ 1.5%	1000 m long and about 20 m thick; steeply	others, 1976b; Bowersox and		
Jamanak	LiO ₂ (1974)	dipping.	Chamberlin, 1995	35.387	70.985
			Abdullah and others, 1977;		
I		Cultable for account and the William	ESCAP, 1995; Bowersox and	20.05:	74 0
Jamarchi- Bolo Quarry		Suitable for cement and as building stone. Mineralized zone up to 500 m long and 6 m	Chamberlin, 1995 Abdullah and others, 1977;	38.254	71.353

	Synonym and Other	Deposit or									
Locality/Deposit Name		District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Janguzay II			Kabol	34-15-40N	69-24-00E	Cu		Occurrence	Vendian-Cambrian	marble-limestone, slate	
Janguzay III			Kabol	34-15-40N	69-23-20E	Cu		Occurrence	Vendian-Cambrian	amphibolite	
Janguzay IV			Kabol	34-15-40N	69-24-00E	Cu		Occurrence	Vendian-Cambrian	marble-limestone, amphibolite, slate	malachite, other
Jar-Bashi			Takhar	37-33N	69-42E	Au	placer	Past producer	Quaternary?	alluvium	
Jari-Chokoor			Ghowr	34-43-00N	65-05-00E	Pb Zn		Occurrence	Proterozoic	schist	galena
Jawkhar			Kabol	34-18-57N	69-18-10E	Cu	sedimentary/volca		Vendian-Cambrian	calcareous metasediments, metavolcanics, amphibolite, quartzite	chalcocite, covellite, cuprite, malachite, chalcopyrite, bornite, sphalerite, pyrite, pyrrhotite, magnetite, ilmenite
Jegdalek		Sorobi district	Kabol	34-26N	69-49E	GEM COLL	skarn, pegmatite	Approx 20 mines as long narrow deep open- pit trenches; in 2000 workings at 34-26-19N, 69-49-08E at an elev. of 2000 m; primitive mining methods; 400 miners	Proterozoic: Oligocene	marble, gneiss; granite	ruby, sapphire, corundum, spinal, garnet, pyrite, muscovite
Jegdalek			Kabol	34-26N	69-50E	Mica		Occurrence	Proterozoic	gneiss	muscovite
Jurgati			Parvan	34-51-30N	69-26-10E	Cr		Occurrence	Eocene	peridotite	chromite
Jurm	Firgamu		Badakhshan	36-50N	70-50E	GEM		Past producer, active?	Late Cretaceous-		lapis lazuli
Jurwa			Zabol	32-15-59N	66-29-30E	Cu	skarn	Occurrence	Paleocene; Vendian- Cambrian	diorite; calcareous sediments	sulfides
Kadilak			Zabol	32-07-20N	66-20-09E	Au Pb Zn Cu	breccia	Occurrence	Late Triassic	limestone	pyrite, chalcopyrite, bornite, chalcocite, galena, hematite
W-!			Charrie	24 100	(4.2/5	F- Dh 7-		0	Late Devonian-Early		h
Kajnaw Kako Kili*			Ghowr Kandahar	34-18N 30-57N	64-36E 66-07E	Fe Pb Zn Cu	shear zone	Occurrence	Carboniferous		hematite, limonite
Kakrak			Ghazni	33-06-40N	67-27-50E	W		Occurrence	Oligonopo	granito	
NdKI dK			GHAZIII	33-06-40IN	67-27-50E	V		Occurrence	Oligocene	granite	spodumene, albite, microcline; minor cassiterite, columbite-
Kalagush	Kalai-Asad; Includes Central, Bib-Gaukhar,		Laghman	35-58-08N	70-23-17E	Li	pegmatite	Occurrence	Late Triassic	slate	tantalite
Kalai-Assad	Southern, Western, and Eastern areas		Kandahar	32-05N to 32- 07N	65-31E to 65- 33E	Zn Pb Cd	skarn	Deposit, D	Late Triassic; Oligocene	carbonates; granite, hornfels	sphalerite, galena, chalcopyrite, pyrite, cerussite, smithsonite
Kalar			Badakhshan	37-36-33N	70-35-50E	Au		Occurrence	Early Triassic	granodiorite	pyrite, chalcopyrite
											spodumene, microcline, albite, lepidolite, amblygonite, pollucite;
Kalatan			Laghman	35-00-26N	70-26-40E	Li Cs Rb	pegmatite	Occurrence	Late Triassic	slate	minor cassiterite
Kalawoch			Badakhshan	37-17N	70-53E	Fe	skarn	Occurrence	Paleogene; Vendian- Cambrian	diorite-gabbro; sandstone	hematite, magnetite
Kalmurgh			Herat	33-45N	61-55E	Cu		Occurrence	Early Cretaceous	limestone	chalcopyrite, pyrite, malachite, azurite

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
		4 mineralized zones 300-1300 m long and	Abdullah and others, 1977;		
Janguzay II	1.55-3.28% Cu	1.5-15 m thick.	Bowersox and Chamberlin, 1995	34.261	69.400
		3 mineralized zones 300-1200 m long and 1-	Abdullah and others, 1977;		
Janguzay III	0.2-3.0% Cu	6 m thick.	Bowersox and Chamberlin, 1995	34.261	69.389
		5 mineralized zones 300-500 m long and up	Abdullah and others, 1977;		
Janguzay IV	0.4-4.46% Cu	to 6 m thick.	Bowersox and Chamberlin, 1995	34.278	69.400
		Valley, bar, and bench placers over an area of			
	100-600 mg/m³ Au	6 km x 1.0-1.5 km. Placer worked to depth of	Abdullah and others, 1977;	07.550	10.700
Jar-Bashi	(past production)	1.5 m. Sericite-quartz-limonite bodies with	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	37.550	69.700
Jari-Chokoor		disseminated galena.	Bowersox and Chamberlin, 1995	34.717	65.083
Sair Chokooi		disserninated galeria.	Bowersox and chamberini, 1775	34.717	03.003
Jawkhar	0.33-2.56% Cu	Mineralized zone is about 2000 m long and up to 300 m thick with 22 lenticular occurrences that are up to 150 m long and 32 m thick.	Abdullah and others, 1977; ESCAP, 1995; Bowersox and Chamberlin, 1995	34.316	69.303
Jawkiidi	0.33-2.30% Cu	that are up to 150 m long and 32 m thick.	Chamberiii, 1995	34.310	69.303
		Ruby-bearing calcite-dolomite marble bed is 500 m thick (western sector) to 2000 m thick			
		(eastern sector). Ruby & sapphire in separate			
		(600-800 m) and joined zones along strike up			
		to 4-5 km long. Only area in country with			
		rubies; production is 15% ruby, 75% pink			
		sapphire; 5% blue sapphire; 5% mixed blue &			
		red to pink corundum; most semitransparent &	Abdullah and others, 1977, p.		
		best suited for cabochons; 3% of corundum	279; ESCAP, 1995; Bowersox and		
	_	facetable up to ~1.5 to 3 ct; most 5 ct or less;	Chamberlin, 1995; Bowersox and		
Jegdalek	122.2 to 157.3 g/m ³	largest reported stone 174 ct.	others, 2000	34.433	69.817
		Pegmatite dikes with low quality muscovite	Abdullah and others, 1977;		
Jegdalek		crystals up to 15 cm ² .	Bowersox and Chamberlin, 1995 Abdullah and others, 1977:	34.433	69.833
Jurgati		Occurrence is 20 x 30 m.	Bowersox and Chamberlin, 1995	34.858	69.436
Julyati		Occurrence is 20 x 30 m.	Jones, 1991; Bowersox and	34.030	09.430
Jurm			Chamberlin, 1995	36.833	70.833
		Skarn and hornfels with disseminated Cu			
		mineralization extends 2200 m along strike	Abdullah and others, 1977;		
Jurwa		and is 30-40 m thick.	Bowersox and Chamberlin, 1995	32.266	66.492
		2 brecciated limestone-hematitic zones (90 m			
.,		long and 200 m long) with disseminated	Abdullah and others, 1977;		
Kadilak		sulfides.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977:	32.122	66.336
Kajnaw		Several hematite-limonite lenses in fault zone.	Bowersox and Chamberlin, 1995	34.300	64.600
Kako Kili*		Several Heritatite-Ill Horlite lerises III fault zorie.	Bowersox and Chamberlin, 1995	30.950	
Kako Kiii		W in silicified, chloritized, epidotized zone	Abdullah and others, 1977;	30.730	00.117
Kakrak		2000 m long and 20-50 m thick.	Bowersox and Chamberlin, 1995	33.111	67.464
		*	Abdullah and others, 1977;		
		15-20 pegmatite dikes, 15-500 m long and 1-6	Rossovskiy and others, 1976b;		
Kalagush	up to 20% spodumene	m thick.	Bowersox and Chamberlin, 1995	35.969	70.388
	Inferred: 0.069 Mt ore, 30.4% Zn, 7.6% Pb,		Abdullah and others, 1977;		
	0.2% Cd; Speculative:	Host rocks form a roof pendent in the granite.	ESCAP, 1995; Bowersox and		
Kalai-Assad	0.2% Cd; Speculative: 0.1 Mt ore	5 mineralized areas, including Bibi-Gaukhar.	Chamberlin, 1995	32.083	65.517
INGIGI ASSOCI	O. I WIL OIG	Shear zone, 400 m long and 20-70 m thick,	Chamberini, 1775	32.003	03.317
		contains quartz veinlets with disseminated	Abdullah and others, 1977;		
Kalar		sulfides.	Bowersox and Chamberlin, 1995	37.609	70.597
			Abdullah and others, 1977;		
		Pegmatite dikes 15-600 m long and 0.5 to 25	Rossovskiy and others, 1976b;		
Kalatan	18 t of pollucite	m thick.	Bowersox and Chamberlin, 1995	35.007	70.444
			Abdullah and others, 1977; Afzali,		
	1	In skarnified roof pendent, there is a hematite-	1981; Bowersox and Chamberlin,		
Kalawoch		magnetite lens. Zone up to 350 m long and 1 m thick with	1995 Abdullah and others, 1977;	37.283	70.883

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Kalta-Taw	Kalta-taw		Takhar	36-30-22N	69-30-41E	COA	sedimentary	Occurrence	Early to Middle Jurassic		coal
Kamard			Bamian	35-15-25N	67-57-40E	COA	sedimentary	Occurrence	Early to Middle Jurassic		coal
Kamard			Bamian	35-18-32N	67-54-00E	Gyp		Occurrence	Late Cretaceous - Paleocene	clay, dolomite	gypsum
Kamdesh			Nangarhar	35-25N	71-22E	Mica	pegmatite	Occurrence	Proterozoic	gneiss	muscovite
Kandahar			Kandahar	31-40N	65-45E	Au	veins	Past producer	Late Jurassic-Early Cretaceous	carbonates, basic volcanics	
Kandinkhel			Paktia	33-09-45N	69-38-30E	Asb	serpentine-hosted asbestos	Occurrence	Eocene	serpentinized peridotite	chrysotile
Kantiway	Kantiwa		Nangarhar	35-17-00N	70-44-30E	GEM Li Qtz	pegmatite	Occurrence	Oligocene	granite	quartz, kunzite, tourmaline, microcline, cleavelandite
Kapisa			Parvan	35-02-03N	69-43-10E	Li Mica Be	pegmatite				mica, beryl
Kara-Jelga			Badakhshan	37-17-20N	74-15-41E	Peat	sedimentary	Occurrence	Quaternary		peat
Karamkol			Samangan	35-41-23N	67-23-06E	COA	sedimentary	Occurrence	Early to Middle Jurassic		coal columbite-tantalite, cassiterite,
Karbah Karban		Darrahe-Nur Pegmatite Field	Laghman Laghman	34-34-14N	70-18-17E	Ta Nb Sn	pegmatite pegmatite	Occurrence	Late Triassic	slate	oligoclase, microcline schorl, garnet, muscovite, beryl, spodumene
Kareztu		J	Ghazni	32-57-45N	67-42-15E	Au	skarn	Occurrence	Late Triassic; Late Cretaceous-Paleocene	marble; diorite	
Kareztu			Ghazni	32-58-02N	67-41-52E	Sn Cu Pb Zn	skarns	Occurrence	Late Triassic; Late Cretaceous-Paleocene	limestone; granosyenite	
Karimdad			Oruzgan	34-10-28N	65-59-14E	Pb	shear zone	Occurrence	Early Cretaceous	siltstone, sandstone	galena
Kariz Amir			Kabol	34-39-00N	69-05-30E	Mbl	metasedimentary	Active mine (1995)	Proterozoic	marble	marble
Karkar Karoon-Sapara*		Jegdalek	Baghlan	36-01-57N	66-46-36E	COA GEM	sedimentary	Small active producer Active mine (1995)	Late Jurassic		ruby
Kai Ooi i-Sapai a		Jegualek				GLIVI		Active mine (1995)			Tuby
Karukh			Herat	34-30-00N	62-34-50E	Cly	sedimentary	Active mine (1995)	Quaternary	clay	clay
Kasha			Paktia	33-16-00N	69-35-40E	COLL Ca	veins	Occurrence	Eocene Oligocene; Vendian-	conglomerate	calcite
Kashmirak II			Zabol	32-43-48N	66-41-46E	W		Occurrence	Cambrian	granite; marble	
Kashmund		Darrahe-Nur Pegmatite Field	Nangarhar	34-37-30N	70-28-00E	Be	pegmatite	Minor past production	Early Cretaceous; Carboniferous-Early Permian	diorite; slate, quartzite, marble	beryl, quartz, albite, microcline; minor columbite-tantalite
Kati-Takalyar						Si	sedimentary			sandstone/quartzite	
Katif			Ghowr	33-27-25N	64-38-04E	Hg		Occurrence			cinnabar
Kaukpar			Baghlan	35-56-55N	68-52-36E	Cly	sedimentary	Occurrence	Neogene	sandstone, conglomerate, clay	clay
Kavir-i-Naizar			Herat	33-40N	60-52E	Bri Hal	lacustrine brine	Active producer (1977), D	Recent		halite

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
			Abdullah and others, 1977;		
Kalta-Taw		Coal seam 20 cm thick.	Bowersox and Chamberlin, 1995	36.506	69.511
			Abdullah and others, 1977;		
Kamard		Coal bed is 45 cm thick and 1000 m long.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	35.257	67.961
Kamard		Massive gypsum beds up to 2.5 m thick.	Bowersox and Chamberlin, 1995	35.309	67.900
rtarrar a		Very fractured muscovite crystals up to 15 x	Abdullah and others, 1977;	00.007	071700
Kamdesh		20 cm in size.	Bowersox and Chamberlin, 1995	35.417	71.367
			Abdullah and others, 1977;		
Kandahar		Mineralized quartz veins.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	31.667	65.750
Kandinkhel		Slip fiber.	Bowersox and Chamberlin, 1995	33.163	69.642
			Abdullah and others, 1977;		
			ESCAP, 1995; Bowersox and		
Kantiway			Chamberlin, 1995	35.283	70.742
Vanica		This is same location and commodities as	ESCAD 100F	25.024	40.710
Kapisa		Pachaghan deposit. A peat bed, 30-45 cm thick, occurs over an	ESCAP, 1995 Abdullah and others, 1977;	35.034	69.719
Kara-Jelga		area of 1 km2.	Bowersox and Chamberlin, 1995	37.289	74.261
		5 gas coal beds 0.6-2.5 m thick that are			
		suitable for generation of thermal power	Abdullah and others, 1977;		
Karamkol		(Abdullah and others, 1977)	Bowersox and Chamberlin, 1995	35.690	67.385
		Pegmatite dikes 70-400 m long and 1.5-4.0 m	Abdullah and others, 1977;		
Karbah		thick.	Bowersox and Chamberlin, 1995	34.571	70.305
rtai bair		Linox.	Developed and chambering 1776	01.071	70.000
Karban			ESCAP, 1995		
		Garnet-pyroxene skarns, 70 m long by 5 m			
		wide by 0.5 m thick, contain serpentine	Abdullah and others, 1977;		
Kareztu		veinlets, both with Au mineralization.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977:	32.963	67.704
Kareztu		Skarns are 50 m long and 1-3 m thick with disseminated sulfides.	Bowersox and Chamberlin, 1995	32.967	67.698
Kurcztu		Small shear zone has thin galena veinlets and	Abdullah and others, 1977;	32.707	07.070
Karimdad		disseminated crystals.	Bowersox and Chamberlin, 1995	34.174	65.987
			ESCAP, 1995; Abdullah and		
			others, 1977; Bowersox and		
Kariz Amir		Forms a 25 m high hill. Irregular coal bed 0.6-10.0 m thick. Workings	Chamberlin, 1995	34.650	69.092
		expose the bed for 550-650 m downdip and for	FSCAP 1995: Abdullah and		
		1000 m along strike. Coal is crumpled and	others, 1977; Afzali, 1981;		
Karkar	6972-7666 Kcal	laminated.	Bowersox and Chamberlin, 1995	36.033	68.777
Karoon-Sapara*			Bowersox and Chamberlin, 1995		
			Abdullah and others, 1977;		
12 11		Clay for bricks; different types of clay are	ESCAP, 1995; Bowersox and	0.4.500	(0.575
Karukh		present	Chamberlin, 1995 Abdullah and others, 1977;	34.500	62.575
Kasha		White and transparent calcite in several veins.	Bowersox and Chamberlin, 1995	33.267	69.594
Rasila		Garnet-pyroxene skarns, 70 m long by 3 m	Abdullah and others, 1977;	33.207	07.574
Kashmirak II		thick contain W mineralization.	Bowersox and Chamberlin, 1995	32.730	66.696
		8 pegmatite dikes along shears are a few tens			
		to hundreds of meters long and up to 30 cm	Abdullah and others, 1977;		
		thick. Minor past production stopped due to	ESCAP, 1995; Bowersox and		
Kashmund		low beryl content.	Chamberlin, 1995 Abdullah and others, 1977;	34.625	70.467
Kati-Takalyar	10.9 Mt @ 82.4% SiO ₂		Chmyriov and others, 1977;		
ranarjai	. 5. 7 WIL G 02.470 3IU ₂	Fractured, calcareous, dickitized zones contain			
Katif		Hg mineralization.	Bowersox and Chamberlin, 1995	33.457	64.634
		<u> </u>	Abdullah and others, 1977;		
		Clay is gypsiferous, reddish and 11-17 m thick.			
Kaukpar		Clay suitable for drilling mud and brick.	Chamberlin, 1995	35.949	68.877
			Abdullah and others, 1977;	00.11-	
Kavir-i-Naizar			Bowersox and Chamberlin, 1995	33.667	60.867

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Kelaghey			Lowgar	34-18-40N	69-11-20E	Cu		Occurrence	Vendian-Cambrian	quartzite	chalcopyrite, malachite
Kelkak	Kelkar		Farah	33-02-55N	61-41-40E	Sn W	stockwork	Occurrence	Oligocene; Eocene- Oligocene	granite; dacite porphyry	scheelite, chalcopyrite, cassiterite
Khaidarabad			Kabol	34-30-35N	69-00-45E	Fe		Occurrence	Proterozoic	quartzite	hematite, magnetite
Khaidarabad			Kabol	34-30-42N	69-01-00E	Cu		Occurrence	Vendian-Cambrian	ferruginous quartzite	hematite, magnetite, chalcopyrite, malachite
Khaish			Bamian	34-43-55N	68-12-30E	Fe	sedimentary	Occurrence	Early Carboniferous		hematite, magnetite
Khakriz-Dahla area*			Kandahar	32-17N	66-47E	Pb Zn			Early-Middle Devonian;		pyrrhotite, chalcopyrite, pyrite,
Khanabad			Ghazni	33-10-20N	67-15-30E	Au Cu	skarn	Occurrence	Oligocene	; granite	malachite, gold
Khanjar			Oruzgan	33-57-12N	65-23-50E	Hg	hydrothermal, shear zone	Occurrence	Early Cretaceous	terrigenous carbonates	cinnabar
Khanneshin	Central Khanneshin		Helmand	30-28N	63-35E	P REE U F Sr Nb		Occurrence	Early Quaternary	carbonatite, tuff, agglomerate, phonolite	apatite, barite, fluorite, pyrochlore, burbankite, U, Sr, Pb, ankerite
Kharnak			Ghowr	33-27-30N	64-31-42E	Нд	hydrothermal	Past producer (1995), O	Early Cretaceous	matasomatites, calcareous siltstone	cinnabar
										granite; skarn, hornfels, siltstone, sandstone,	
Kharnay			Ghazni	32-47-55N	6-20-00E	W Be	skarn	Occurrence	Oligocene;	limestone	scheelite, beryl
Kharuti I			Kabol	34-23-12N	69-20-50E	Cu		Occurrence	Vendian-Cambrian	marble	
Kharuti II			Kabol	34-22-05N	69-21-00E	Cu		Occurrence	Vendian-Cambrian	marble	
Khasan-Sansalaghei			Ghowr	34-41-08N	64-35-00E	Pb Zn Cu		Occurrence			
Khasar			Takhar			Au				valley alluvium- sandy argillaceous rock	native gold
Khawre-Khawre			Kabol	34-44N	69-30E	Qtz		Occurrence	Proterozoic	volcanics	quartz, rock crystal
Khawri	Khawai		Kabol	34-13N	69-45E	GRF		Occurrence	Proterozoic	quartzite, marble	graphite
Khinjak			Ghazni	32-51-45N	67-37-05E	Sn		Occurrence	Permian Late Jurassic-Early	limestone	cassiterite, secondary Pb and Cu minerals
Khinjaktu			Ghazni	32-54N	67-44E	Au Cu	skarn	Occurrence	Cretaceous; Late Cretaceous-Paleocene	limestone; diorite	
Khojarawas			Kabol	34-33-00N	69-07-30E	Mbl	metasedimentary	Intermittent producer (1977)	Proterozoic	marble	marble
Khundara	Kundara		Lowgar	34-13-55N	69-15-40E	Cu		Occurrence	Vendian-Cambrian	slate, marble	
Khurdkabul Kinjan*			Kabol Kunduz	34-22-20N 35-39N	69-22-40E 68-58E	Cu COA		Occurrence	Vendian-Cambrian	carbonates, phyllite, schist, marble	covellite, chalcopyrite, chalcocite coal
Kishakton			Takhar	36-36-36N	69-41-56E	COA		Occurrence	Late Jurassic		coal
Kochak			Oruzgan	32-58N	63-43E	W Bi Cu	skarn	Occurrence	Middle-Late Jurassic; Early Cretaceous	limestone; diorite- gabbro	pyrite, chalcopyrite, hematite

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
			Abdullah and others, 1977;		
Kelaghey		Very small area of Cu mineralization.	Bowersox and Chamberlin, 1995	34.311	69.189
		Mineralized quartz stockwork 244 m long.	Abdullah and others, 1977;		
		South of stockwork are quartz veins with high	ESCAP, 1995; Bowersox and		
Kelkak	0.07% WO ₃	scheelite.	Chamberlin, 1995	33.049	61.694
		Ferruginous quartzite bed has coarsely			
		disseminated iron mineralization forming up to			
Khaidarabad		40% of the rock volume.	Bowersox and Chamberlin, 1995	34.510	69.013
		Ferruginous quartzite bed is 1000 m long and	Abdullah and athera 1077		
Vhaidarahad		3-10 m wide with areas enriched in Fe and Cu minerals.	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	24 512	69.017
Khaidarabad		Host rock overlies Proterozoic schist. 5	Bowersox and Chamberlin, 1995	34.512	69.017
i	Speculative 117 Mt @	medium- to fine-grained orebodies 1-300 m	ESCAP, 1995; Abdullah and		
I	48.62% Fe, up to 0.1%	long, 10-20 m thick, and at least 200 m	others, 1977; Afzali, 1981;		
Khaish	Ti, 0.019% Co	downdip.	Bowersox and Chamberlin, 1995	34.732	68.208
Khakriz-Dahla area*	.,,		Bowersox and Chamberlin, 1995	32.283	
		Skarns at granite-Devonian rock contact are up			
Khanabad	2-6 g/t Au	to 400 m long and 2-10 m thick.	Bowersox and Chamberlin, 1995	33.172	67.258
		Hydrothermally altered zone along faults is			
		over 1000 m long and 2-40 m thick. This area	Abdullah and others, 1977;		
Khanjar		has 3 styles of Hg mineralization.	Bowersox and Chamberlin, 1995	33.953	65.397
			ESCAP, 1995; Abdullah and		
			others, 1977; Afzali, 1981;		
Khanneshin		Mineralization extends over a 40 km ² area.	Bowersox and Chamberlin, 1995	38.467	63.583
	0.10-0.63% Hg and up		Abdullah and others, 1977; ESCAP, 1995; Bowersox and		
Kharnak	to 3.2% Hg	Many ancient workings.	Chamberlin, 1995	33.458	64.528
Kharnak	10 3.2% ng	ivially afficient workings.	Chamberlin, 1995	33.436	04.326
		Skarns in roof pendant have irregular scheelite			
		lenses and veinlets. Also disseminated beryl is	Abdullah and others, 1977:		
Kharnay		associated with quartz veinlets in the granite.	Bowersox and Chamberlin, 1995	32.799	67.333
		Cu-bearing zone is 200 m long and 5-10 m	Abdullah and others, 1977;		
Kharuti I	about 1% Cu	thick.	Bowersox and Chamberlin, 1995	34.387	69.347
		9 Cu-bearing zones 100-900 m long and 3-25	Abdullah and others, 1977;		
Kharuti II		m thick. Zones are near contact with schist.	Bowersox and Chamberlin, 1995	34.368	69.350
			Abdullah and others, 1977;		
Khasan-Sansalaghei		DI : 1/00 I I I I I I I I I I I I I I I I I I	Bowersox and Chamberlin, 1995	34.686	64.583
VI	Indicated + Inferred	Placer is 4600 m long and 30-100 m wide. Pay streak is close to bedrock.	Abdullah and others, 1977		
Khasar	437 kg Au	Pay Streak is close to bedrock.	Abdullah and others, 1977;		
Khawre-Khawre		Siliceous veins up to 50 m long and 2 m thick.	Bowersox and Chamberlin, 1995	34.733	69.500
Kilawi e Kilawi e		Graphite-bearing quartzite and marble contain	Abdullah and others, 1977;	34.733	07.500
Khawri		up to 2% "scabby" graphite.	Bowersox and Chamberlin, 1995	34.217	69.750
		A zone of hematized, limonitized, and			
		brecciated limestone, 4.0-7.5 m thick, is	Abdullah and others, 1977;		
Khinjak		mineralized.	Bowersox and Chamberlin, 1995	32.863	67.618
			Abdullah and others, 1977;		
Khinjaktu		Skarns up to 200 m long.	Bowersox and Chamberlin, 1995	32.900	67.733
VI!			Abdullah and others, 1977; Bowersox and Chamberlin, 1995	24.550	(0.10
Khojarawas		3 Cu-bearing zones 200-500 m long and 10-20	Abdullah and others, 1977;	34.550	69.125
Khundara		m thick.	Bowersox and Chamberlin, 1995	34.232	69.261
KHUHUAI A		3 Cu-bearing zones 800-900 m long and 5-50	bowersox and cridifiberiii, 1995	34.232	09.20
		m thick with irregular mineralization (veinlets,	Abdullah and others, 1977;		
Khurdkabul		disseminated).	Bowersox and Chamberlin, 1995	34.372	69.378
Kinjan*		alborimated).	Bowersox and Chamberlin, 1995	35.650	68.967
y		Coal seam 2.44 m thick showing	Abdullah and others, 1977;	55.550	33.707
Kishakton	Speculative 2 Mt	metamorphism.	Bowersox and Chamberlin, 1995	36.610	69.699
		Skarn with disseminated sulfides is up to 4500			
Kochak	I	m long and 10-120 m thick.	Bowersox and Chamberlin, 1995	32.967	66.717

	Cunanum and Other	Donocit az									
Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Kohe Moghu Aba			Lowgar	34-14-30N	69-02-45E	Asb		Occurrence	Eocene;	serpentinite; diabase dikes	asbestos
Kohe Pod			Herat	34-09N	63-24E	Fe	sedimentary	Occurrence	Late Devonian-Early carboniferous		
Kohe-babo-sanghun			Parvan	34-52N	69-38E	Mica		Occurrence	Proterozoic	gneiss	muscovite
Kohe-Safed			Ghowr	34-05N	63-20E	AI		Occurrence	Late Permian	limestone	bauxite
Kohi			Faryab	35-22N	65-15E	Fe	replacement	Small past producer (1977)	Late Cretaceous; Miocene	; granite porphyry	hematite, magnetite
Koh-i-Kalawur	Koh-e-Kalawur		Lowgar	34-05-45N	69-07-45E	Cr		Occurrence	Eocene	ultrabasic rocks	
Koh-i-Katif			Ghowr	33-26-32N	64-38-10E	Hg		Small past producer (1977)	Early Cretaceous	siltstone	cinnabar
Koh-i-Sohi	Kohi-Sohi		Oruzgan	32-56N	66-48E	Cu Bi		Occurrence			
Koh-i-Sokhi			Oruzgan	32-56-00N	66-40-00E	Cu Bi	skarn	Occurrence	Late Triassic-Early Jurassic; Oligocene	terrigenous carbonates; granite	pyrite, chalcopyrite, bornite, molybdenite
	Koh-i-alburz; Includes										
Kon-i-Alburz	Chashma-i-Shafa area		Balkh	35-35N	66-51E	Si	sedimentary serpentine-hosted		Late Cretaceous	sandstone	silica sand
Kopra			Paktia	33-13-11N	69-34-00E	Asb	asbestos	Occurrence		peridotite	asbestos, calcite
Korezak	Karezak		Farah	33-06N	60-44E	Fe Cu Pb Zn Ag Cd Bi Sn Sb As	skarn, replacement	Occurrence	Early Cretaceous; Oligocene	limestone; granite	magnetite
Korothka	Korthka		Zabol	32-33-18N	66-39-56E	GEM Qtz COLL	igneous, alluvial	Occurrence	Oligocene	granite	amethyst, quartz
Kotalj-i-Sebzak	Kotal-i-Sebzak		Herat	34-39-30N	63-09-00E	Р	Marine chemical sediment	Occurrence	Late Cretaceous	clay, sandstone, limestone	phosphorite
Krunch			Badakhshan	37-27-00N	71-30-30E	SDG			Quaternary?	alluvium	sand and gravel
Kuchi Kuh-i-Lal*			Farah	33-05-20N 37-11-14N	61-45-27E	Sn GEM		Occurrence	Oligocene	granite	spinel (balas ruby)
Kun-i-Lai" Kulam deposit	Kolum; Includes: Main Dike, Kunzite Dike	Nilaw-Kolum Field	Badakhshan Laghman	35-12-07N	71-27-40E 70-20-04E	GEM Li Be Ta Qtz Rb Cs	pegmatite	Deposit	Cretaceous	gabbro	spiner (datas ruby) tourmaline, kunzite, spodumene, beryl, microcline, rock crystal/quartz, pollucite, cassiterite, petalite
		Nilaw-Kolum				GEM Li Be Qtz		Active intermittent			kunzite, spodumene, cleavelandite, lepidolite, beryl, tourmaline, pollucite, vorobyevite,
Kulam vein Kulangar (deposit no.	Kolum	Field	Laghman	35-12-07N	70-20-04E	Cs	pegmatite	production (1973)	Cretaceous	gabbro, gabbro-norite	rock crystal, quartz, microcline
10)*			Lowgar	34-06N	69-08E	Cr					
Kunag			Zabol	32-29-34N	66-35-55E	Cu Au	skarn	Occurrence	Oligocene; Devonian	granite; sandstone, limestone	chalcopyrite, bornite, covellite
Kunak			Oruzgan	34-00-00N	66-41-30E	Mica		Occurrence	Proterozoic	metamorphic rocks	muscovite, quartz; minor garnet, cassiterite, orthite, W, Cu, Sn
Kundalen*			Zabol	32-20N	66-30E	Cu					chalcopyrite, magnetite, pyrite,
Kundalyan	Kundelan; <i>Includes</i> Kundalyan, Kaptarghor, and Surkhi-Shela areas		Zabol	32-18-46N	66-31-58E	Cu Mo Au Ag	skarn	Deposit, D	Proterozoic; Vendian- Cambrian	metamorphic rocks	sphalerite, molybdenite, chalcocite, bornite, covellite, native Cu, malachite

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
		Asbestos-bearing zone along diabase dikes.	Abdullah and others, 1977;		
Kohe Moghu Aba		Cross-fiber asbestos.	Bowersox and Chamberlin, 1995	34.242	69.046
		2 oolitic iron beds 1.5 m thick. Bowersox and	Abdullah and others, 1977;		
Kohe Pod		Chamberlin (1995) give latitude as 34-19N. Over 20 pegmatite dikes about 200 m long	Bowersox and Chamberlin, 1995	34.317	63.400
		and 0.5-2.0 m thick. Muscovite crystals are			
		deformed, but up to 20 cm ² by 1-1.5 cm thick	Abdullah and others, 1977;		
Kohe-babo-sanghun		in size.	Bowersox and Chamberlin, 1995	34.867	69.633
		2 bauxite lenses 15-20 m long and 1.5-2.5 m	Abdullah and others, 1977;		
Kohe-Safed		thick. Tabular replacement body over 300 m long	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	34.083	63.333
Kohi	Speculative 0.5 Mt	and 5 m thick.	Bowersox and Chamberlin, 1995	35.367	65.250
			Abdullah and others, 1977;		
Koh-i-Kalawur		7 chromite lenses up to 4.5 by 27 m in size.	Bowersox and Chamberlin, 1995	34.096	69.129
W 1 1 W 110		An altered area 20 x 50 m contains Hg	Abdullah and others, 1977;	00.440	
Koh-i-Katif		mineralization.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	33.442	64.636
Koh-i-Sohi			Bowersox and Chamberlin, 1995	32.933	66.800
		Wollastonite-garnet-epidote skarns up to 1500			
Koh-i-Sokhi		m long with sulfide mineralization.	Bowersox and Chamberlin, 1995	32.933	66.667
		Massive weakly-cemented sandstone beds up to 225 m thick. Suitable for bottle and window	ESCAP, 1995; Abdullah and		
Kon-i-Alburz	Speculative 0.110 Mt	alass.	Chamberlin, 1995	35.583	66.850
KOIT-FAIDUI Z	Speculative 0.1 10 IVI	giass.	Abdullah and others, 1977;	33.303	00.030
Kopra			Bowersox and Chamberlin, 1995	33.220	69.567
		Garnet pyroxene skarns 100 m long and 50 m	Abdullah and others, 1977;		
	1 1000/	thick and a pipe-like sulfide replacement	Chmyriov and others, 1973;	00.400	
Korezak	about 20% magnetite	deposit 3-4 m in diameter. Nests in granite containing quartz, rock crystal	Bowersox and Chamberlin, 1995	33.100	60.733
		and amethyst. Adjacent alluvium also contains	Abdullah and others, 1977;		
Korothka		"morion" and smoky topaz.	Bowersox and Chamberlin, 1995	32.555	66.666
			ESCAP, 1995; Abdullah and		
Kotali i Cabzak	(20700	Bed is 0.3-1.0 m thick with phosphorite nodules up to 5.6 cm across.	others, 1977; Bowersox and Chamberlin, 1995	34.658	63.150
Kotalj-i-Sebzak	6.2-9.7 P ₂ O ₅ Reserves 10 Mm ³ in	flodules up to 5.6 cm across.	Chamberlin, 1995	34.036	63.130
	upper portion of terrace	A 22 m high and 5000 m long terrace of the	Abdullah and others, 1977;		
Krunch	(1977)	Panj River.	Bowersox and Chamberlin, 1995	37.450	71.508
	, ,	3 silicified, feldspathic zones contain tin and	Abdullah and others, 1977;		
Kuchi		other mineralization.	Bowersox and Chamberlin, 1995	33.089	
Kuh-i-Lal*			Bowersox and Chamberlin, 1995	37.187	71.461
	Speculative 714 kg		ESCAP, 1995; Abdullah and		
	kunzite, 16.3 kg	Over 10 pegmatite dikes contain rare-metal	others, 1977; Bowersox and		
Kulam deposit	tourmaline, 50 t beryl	mineralization; 2 have economic significance.	Chamberlin, 1995	35.202	70.334
			Chmyriov and others, 1973;		
		This deposit is on the eastern flank of the	ESCAP, 1995; Bowersox and		
		pegmatite field. The main vein is 5-40 m thick			
Kulam vein		(30 m aver.) and over 1200 m long.	1977; Rossovskii and others, 1978	35.202	70.334
Kulangar (deposit no.		Province is reported as Kabol, but latitude-			
10)*		longitude is in Lowgar.	Bowersox and Chamberlin, 1995	34.100	69.133
Kunag			Abdullah and others, 1977; Bowersox and Chamberlin, 1995	32.493	66.599
9		Pegmatite dikes tens to hundreds of meters	Demoissa and Ghamberini, 1775	32.473	35.377
		long and 1.5-2.0 m thick. Small, low-quality	Abdullah and others, 1977;		
Kunak		muscovite crystals.	Bowersox and Chamberlin, 1995	34.000	66.692
Kundalen*	0.0314 Mt @ 1.310/ O··		Bowersox and Chamberlin, 1995	32.333	66.500
	0.0214 Mt @ 1.21% Cu, 133 t Mo, 1.6 t Au,		Chmyriov and others, 1973; ESCAP, 1995; Abdullah and		
	0.144% Mo, 0.9 g/t Au;		others, 1977; Bowersox and		
Kundalyan	1.8 Mt @ 0.14% Mo	Mineralization to depth of 115 m.	Chamberlin, 1995	32.313	66.533

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Kunduz	Kartaw, Qonduz		Kunduz	36-42N	68-35E	Sr	bedded	Occurrence, D	Paleogene		celestite
Kunduli	-		Ghazni	33-25-55N	67-30-40E	Cu	hydrothermal, shear zone	Occurrence	Proterozoic	schist, sandstone	pyrite, chalcopyrite, secondary Cu minerals
Kurghal	Korgal, Korghal	Kurghal (Korghal) Pegmatite Field		35-04-06N	70-18-20E	GEM Cs Rb	pegmatite	Active intermittent production (1995)	Oligocene; Proterozoic	granite; schist, gneiss	tourmaline, pollucite, tantalite, lepidolite, quartz, microcline, cleavelandite, cassiterite, muscovite, oligoclase, beryl
Kushast	rorgar, Korgilai	r ogmante mora	Herat	34-28-05N	62-59-26E	Fe	skarn	Occurrence	Early Carboniferous; Late Triassic	calcareous slate; granite	
Kushk			Ghowr	34-30N	66-00E	Pb Zn Cu	shear zone	Occurrence	Early Carboniferous	volcanoclastic rocks, sandstone	malachite, azurite
Kushkak			Ghowr	34-34N	64-31E	Ba Cu Pb Au Zn		Occurrence	Late Cretaceous	limestone	barite, sulfides
Kusuk	Kuzuk		Laghman	34-55N	70-06E	Mica		Occurrence	Proterozoic	gneiss, gneissic granite	muscovite
Kwali-Kushi Lagharaan*			Ghazni Badakhshan	33-18-55N 36-22N	67-23-10E 71-13E	Fe Pb Zn GEM	skarn	Occurrence	Devonian; Late Cretaceous-Paleocene	limestone; syenitic gabbro	pyrrhotite, magnetite, hematite, chalcopyrite lapis lazuli
Lajar			Zabol	32-13-55N	66-28-51E	Serp	skarn	Active Small producer (1977)	; Late Cretaceous- Paleocene; Permian	serpentinite; diorite; dolomite	serpentine
Lal-Poor*		Jegdalek				GEM		Active mine (1995)			ruby
Lalandar	Landar		Kabol	34-23-48N	69-01-48E	TIC		Occurrence	Eocene; Late Permian	ultrabasic bodies; slate, limestone	talc
Lalmi-Tanghi			Kabol	34-18-33N	69-20-35E	Cu		Occurrence	Vendian-Cambrian	schist	
Laman			Badghis	34-45-50N 34-45 to 34-	63-06-30E 63-07E to 63-	Lst			Late Cretaceous Late Cretaceous to	limestone, marl	marl
Laman			Badghis	47N	10E	Gyp		Occurrence Active intermittent	Paleocene	calcareous rocks	gypsum
Landaw -Sin Valley						Gar	metamorphic	production (1973)	Arch-Proterozoic	schist	garnet, staurolite
Lar			Ghazni	33-09-00N 33-01-00N to	67-48-15E 67-42-50E to	Fe		Occurrence	Carboniferous-Early Permian	limestone, sandstone	limonite, hematite
Larga	Largha		Ghazni	33-01-30N	67-44-20E	Sn Pb Zn Cu	shear zone	Occurrence	Late Permian	limestone	hematite, magnetite
Lashkar-Qala			Ghazni	32-53-40N	67-31-05E	Au Cu		Occurrence	Late Permian	limestone	pyrite, chalcopyrite, secondary Cu minerals, native gold
Lela		Darrah-i-Suf coal district	Samangan	35-38-30N	67-10-35E	COA	sedimentary	Occurrence, D	Early to Middle Jurassic		
Loe-Dakka*			Nangarhar	34-11N	70-56E	Asb					asbestos
Loghar	Logar		Lowgar	34-05N to 34- 15N	66-56E to 69- 08E	Cr	magmatic	Occurrence, D	ultrabasic rocks		chromite
Loghar			Lowgar	34-06-30N	69-01-30E	Asb	serpentine-hosted asbestos	Occurrence?	Eocene	peridotite	chrysotile
Loghar Valley*			Lowgar	34-10N	69-10E	Cly			Early Cretaceous;		fuller's earth
Lom			Kandahar	31-40N	65-26E	Fe	skarn	Occurrence	Oligocene	limestone; granodiorite	magnetite
Los-Dakka*			Nangarhar	34-11N	70-56E	TIc					talc

	Deposit Size and (or)			Decimal	Decimal
Locality/Deposit Name	Grade	Comments	References	Latitude	Longitude
			Abdullah and others, 1977;		
	Speculative: 1 Mt @	Celestite-bearing body is over 1400 m long	ESCAP, 1995; Bowersox and		
Kunduz	76.91% SrSO ₄	and exposed 10-14 m downdip.	Chamberlin, 1995	36.700	68.583
		Altered shear zone, 600 m long and up to 15			
		m thick, with veinlets and disseminations of	Abdullah and others, 1977;		
Kunduli		sulfides.	Bowersox and Chamberlin, 1995	33.432	67.511
			ESCAP, 1995; Abdullah and		
		3 pegmatite dikes yield green tourmaline.	others, 1977; Bowersox and		
Kurghal		ESCAP (1995) gives longitude as 70-18-29E.	Chamberlin, 1995	35.068	70.306
rtargriai		Bowersox and Chamberlin (1995) give latitude		00.000	70.000
Kushast		as 35-38-05N.	Bowersox and Chamberlin, 1995	34.635	62.991
		Shear zone with highly altered sandstone has	Abdullah and others, 1977;		
Kushk		Cu mineralization.	Bowersox and Chamberlin, 1995	34.500	66.000
		Mineralized body is 60 x 120 m with barite,			
	50.040/ 1 11 4.05	quartz, calcite and irregular sulfides.	41 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
V la la a la	52.24% barite; 4.05-	Bowersox and Chamberlin (1995) give latitude for Au at Kushkak as 34-04N.	Bowersox and Chamberlin, 1995	24 500	(4517
Kushkak	6.30% Cu	Narrow, random pegmatite bodies with small	Abdullah and others, 1977;	34.500	64.517
Kusuk		muscovite crystals.	Bowersox and Chamberlin, 1995	34.917	70.100
Kusuk		2 skarn-hornfels zones, 500 and 275 m long	Bowersox and chamberini, 1775	34.717	70.100
		and up to 60 m thick, each, contain irregular	Abdullah and others, 1977;		
Kwali-Kushi		mineralization.	Bowersox and Chamberlin, 1995	33.315	67.386
Lagharaan*			Bowersox and Chamberlin, 1995	36.367	71.217
-					
		Serpentinite skarns at diorite - dolomite roof	Abdullah and others, 1977;		
Lajar		pendent contact. Bodies up to 3 x 5 m in size.	Bowersox and Chamberlin, 1995	32.232	66.481
Lal-Poor*			Bowersox and Chamberlin, 1995		
Lalandar		Four tale bearing zance up to 200 m long	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	24 207	40.020
Lalandar		Four talc-bearing zones up to 800 m long. Cu-bearing zone is 200 m long and 0.2-0.4 m	Abdullah and others, 1977;	34.397	69.030
Lalmi-Tanghi		thick.	Bowersox and Chamberlin, 1995	34.764	63.108
Lainn rangin		unck.	Abdullah and others, 1977;	34.704	05.100
Laman		Suitable for cement.	Bowersox and Chamberlin, 1995	34.764	63.108
		Loosely consolidated gypsum lenses up to 1.0	Abdullah and others, 1977;	34.750 to	63.117 to
Laman		m thick.	Bowersox and Chamberlin, 1995	34.783	63.167
Landaw -Sin Valley		Lenticular limonite-hematite bodies in shear	Chmyriov and others, 1973		
		zone extend for 1250 m along strike and 260-	Abdullah and others, 1977;		
Lar	Speculative 8 Mt	300 m down dip.	Bowersox and Chamberlin, 1995	33.150	67.804
Lai	Speculative 0 ivit	Brecciated fault zone, 2-14 m thick and up to	Abdullah and others, 1977;	33.017 to	67.714 to
Larga		3000 m long, with mineralization.	Bowersox and Chamberlin, 1995	33.025	67.719
		Altered limestone along fault zone is			
		mineralized; mineralized area is about 160 m	Abdullah and others, 1977;		
Lashkar-Qala		long and 9.5 m thick.	Bowersox and Chamberlin, 1995	32.894	67.518
			ESCAP, 1995; Abdullah and		
		15 coal beds and intercalations of coal seams	others, 1977; Afzali, 1981;		
Lela	3.5-30.0% ash	0.65-2.80 m thick.	Bowersox and Chamberlin, 1995	35.642	67.176
Loe-Dakka*		Same location as Los-Dakka talc deposit.	Bowersox and Chamberlin, 1995 Chmyriov and others, 1973;	34.183	70.933
			ESCAP, 1995; Abdullah and		
	Reserves0.181 @	2 lenticular chromite-bearing zones 10-100 m	others, 1977; Bowersox and	34.083 to	66.933 to
Loghar	42.2% Cr ₂ O ₃	long and 1-10 m thick.	Chamberlin, 1995	34.250	69.133
<u> </u>		<u> </u>		2230	211150
		Asbestos is developed at contact of porphyry	ESCAP, 1995; Abdullah and		
	Measured 0.350 Mt	and lamprophyre dikes. Mineralized zones up	others, 1977; Bowersox and		
Loghar	asbestos (1973)	to 600 m long and 0.1-0.5 m thick.	Chamberlin, 1995	34.108	69.025
Loghar Valley*			Bowersox and Chamberlin, 1995	34.167	69.167
			Abdullah and others, 1977;		
Lom			Bowersox and Chamberlin, 1995	31.667	65.433
Los-Dakka*		Same location as Loe-Dakka asbestos deposit.	Bowersox and Chamberlin, 1995	34.183	70.933

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Loy-Khan*		Jegdalek				GEM		Active mine (1995)			ruby
•								, ,			
Ludin			Zabol	32-35-08N	66-31-47E	Au Pb Zn		Occurrence	Early-Middle Devonian	marble	
Ludiii			Zuboi	02 00 0011	0001172	na i b zii		00041101100	Early Miladio Bovonian	THE DIO	
Luman			Ghazni	33-06-20N	67-40-10E	Au Cu		Occurrence	Oligonopo	granite	
Luman			GHAZIII	33-06-20IN	67-40-10E	Au Cu		Occurrence	Oligocene	granite	
											magnetite, pyrite, ludwigite,
Maghn			Ghazni	32-55-20N	67-38-00E	Sn	breccia	Occurrence	Late Triassic	limestone, dolomite	cassiterite, garnet, Cu minerals
Majid-i-Chubi	Majit-i-Chubi	Sabjak coal district	Herat	34-36-00N	63-09-30E	COA	sedimentary	Occurrence, D	Early to Middle Jurassic		coal
Makhmudgazi I		_	Lowgar	34-07-40N	69-02-10E	Cr		Occurrence	Eocene	peridotite	chromite
Makhmudgazi II			Lowgar	34-07-10N	69-02-10E	Cr		Occurrence	Eocene	peridotite	chromite
				0.4.00.001	(0.01.005				-		
Makhmudgazi III			Lowgar	34-08-20N	69-01-00E	Cr		Occurrence	Eocene	ultrabasic rocks	chromite
Malik Dukan			Helmand	29-43N	63-36E	Arag	veins	Active mine (1973)	Eocene-Oligocene	volcanic rocks	anhydrite, aragonite
Mank Bakari			ricimana	27 4510	03 302	7 dg	Venis	Active time (1775)	Edecile Oligocolic	Voicariie Focks	arinyarite, aragorite
Malumat			Herat	34-29N	62-44E	Cly	sedimentary	2	Quaternary	clay	clay
Iviaiuiiiat			nerat	34-2910	02-44L	Ciy	sedimentary	1	Quaterriary	ciay	Clay
Mamadugha			Lowgar	34-19-30N	69-07-30E	Mg		Occurrence	Eocene	diabase	magnesite
Manay			Lowgar	34-04-55N	69-19-20E	Pb Cu	veins	Occurrence	Early to Middle Triassic	andesite, basalt	chalcopyrite, malachite
Mandanesha*			Badakhshan	35-40N	70-42E	GEM			,		tourmaline
Mandoghol			Badakhshan	36-23N	71-29E	Qtz	vein		Oligocene; Late Triassic	granitic plug; quartzite	quartz
Manaognor			Badamishan	55 251	7.1272	- C.L.	10		ongocono, cato massio	granitio prag, quarterto	quartz
Mangasak			Vardak	34-21N	67-44E	Fe		Occurrence	Proterozoic	schist, gneiss	magnetite
iviariyasak			varuak	34-2 IIV	07-44E	re		Occurrence	FTOTETOZOIC	scriist, grieiss	magnetite
Manjlek			Paktia	33-31-50N	69-57-50E	COLL Ca	vein	Occurrence	Paleocene	conglomerate	calcite
Manjyadar			Parvan	35-28N	69-40E	Mica Be		Occurrence	Proterozoic	gneiss	muscovite
Manwa*			Herat	34-12N	62-53E	Fe				J	
Maraghol			Ghazni	33-07-05N	67-24-40E	w		Occurrence	Oligocene	granite	
Marghi			Ondern	0007001	07 2 1 102	Li	pegmatite	00041101100	ongodono	granito	spodumene
Marid			Nangarhar	35-08-00N	71-17-58E	Li	pegmatite	Occurrence	Proterozoic Early Cretaceous;	gneiss, schist, limestone	spodumene, microcline, albite; minor cassiterite
Markoh			Farah	32-46N	60-58E	Cu	skarn	Occurrence	Oligocene	limestone; granite	malachite, azurite
Masjet						COA	sedimentary				morganite, aquamarine, garnet
Mawi*			Laghman	35-10N	70-12E	GEM		Active mine (1995)			(spessartite), spodumene, tourmaline
								Active production			
Maydan	Maydan Marble Mines		Bamian	34-26N	68-47E	Mbl	metasedimentary	Active production (1995)	Proterozoic	marble, schist	marble
	,										
Maydan		+	Vardak	34-28-24N	68-46-12E	Cu	vein	Occurrence	Proterozoic	calcareous schist	malachite, chalcopyrite
											wolframite, beryl, cassiterite,
Maydan-Ahu	Maydane Ahu		Zabol	32-46-24N	66-54-38E	W Be Sn	greisen	Occurrence	Oligocene	granite	molybdenite
Maymana			Faryab	36-06-00N	64-42-30E	Hal	lacustrine brine	Active mine (1977),	Quaternary	lacustrine sediments	halite

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
Loy-Khan*			Bowersox and Chamberlin, 1995		
Loy Kridii		Brecciated, ferruginous zone in marble (100 m	Bowersox and chamberini, 1775		
		long and 50-70 m thick) contains	Abdullah and others, 1977;		
Ludin	up to 13.4 g/t Au	mineralization.	Bowersox and Chamberlin, 1995	32.586	66.530
		Quartz veins in shear zone contain			
		mineralization. Veins are up to 60 m long and	Abdullah and others, 1977;		
Luman		0.5-1.5 m thick.	Bowersox and Chamberlin, 1995	33.106	67.669
	0.07.4.000/.0. /		Abdullah and others, 1977;		
NA	0.07-1.30% Sn (aver.	Mineralization is in brecciated, fault zone up to	Chamberlin, 1995	22.022	(7.400
Maghn	0.11% Sn)	1500 m long and 1-50 m thick.	ESCAP, 1995; Abdullah and	32.922	67.633
	Indicated + Inferred:	17 coal beds, 4 are 0.6-1.93 m thick. Ash is	others, 1977; Afzali, 1981;		
Majid-i-Chubi	9.5 Mt, 5.5-38.5% ash	high in sulfur.	Bowersox and Chamberlin, 1995	34.600	63.158
Majiu-1-Criubi	7.5 IVIT, 5.5-50.570 d311	2 massive chromite occurrences 5 m by 40 m		34.000	03.130
	Estimate 5600 t @	and 3 m by 50 m. There are also some small	Abdullah and others, 1977:		
Makhmudgazi I	43.4% Cr oxide	lenses of chromite.	Bowersox and Chamberlin, 1995	34.128	69.036
	Estimate 1300 t @	Several chromite lenses, 1 m by 5 m to 2 m by	Abdullah and others, 1977;		
Makhmudgazi II	43.6% Cr oxide	51 m.	Bowersox and Chamberlin, 1995	34.119	69.036
	Estimate 840 t @	2 massive chromite occurrences, 30-40 m long			
Makhmudgazi III	42.3% Cr oxide	and 0.3-0.5 m thick.	Bowersox and Chamberlin, 1995	34.139	69.017
	Indicated 0.120 Mt		Chmyriov and others, 1973;		
	anhydrite (1960);	Aragonite veins up to 500 m long and 1.2-5.0	Abdullah and others, 1977;		
	Speculative 0.650 Mt	m thick in an area of 128,300 m ² . Ornamental	ESCAP, 1995; Bowersox and		
Malik Dukan	anhydrite (1972)	use.	Chamberlin, 1995	29.717	63.600
i			Abdullah and others, 1977;		
N 4 - 1 4		Class assistant to the basis to	ESCAP, 1995; Bowersox and	24 402	(0.700
Malumat		Clay suitable for bricks. Magnesite lens is 200 m long and about 0.35	Chamberlin, 1995 Abdullah and others, 1977;	34.483	62.733
Mamadugha		m thick.	Bowersox and Chamberlin, 1995	34.325	69.125
Mamadagna		Mineralized quartz veins, tens of meters long	Abdullah and others, 1977;	34.323	07.123
Manay		and up to 0.5 m thick.	Bowersox and Chamberlin, 1995	34.082	69.322
Mandanesha*		and up to ole in their	Bowersox and Chamberlin, 1995	35.667	70.700
			ESCAP, 1995; Bowersox and		
Mandoghol		50-70 m thick quartz-bearing zone.	Chamberlin, 1995	36.383	71.483
		An altered carbonated zone at the contact of			
		the schist and gneiss contains magnetite, is	Abdullah and others, 1977;		
Mangasak		1200 m long, and 50-100 m thick.	Bowersox and Chamberlin, 1995	34.350	67.733
		Transparent calcite crystals up to 2 x 3 cm in	Abdullah and others, 1977;		
Manjlek		size in a vein 100 m long.	Bowersox and Chamberlin, 1995	33.531	69.964
		Lenticular bodies 80-100 m long and 3-4 m	Abdullah and others, 1977;	05.447	
Manjyadar		thick with fractured muscovite crystals.	Bowersox and Chamberlin, 1995 Bowersox and Chamberlin, 1995	35.467	69.667
Manwa*		An mineralized altered zone is 1000 m long	Abdullah and others, 1977;	34.200	62.883
Maraghol		and 20-70 m thick.	Bowersox and Chamberlin, 1995	33.118	67.411
Marghi		and 20 70 m thick.	Rossovskiy and others, 1976b	33.110	07.411
margini		Pegmatite blocks (float) are found 2000 m	Abdullah and others, 1977;		
Marid		downstream from Marid Village.	Bowersox and Chamberlin, 1995	35.133	71.299
		Skarns with mineralized areas up to 30 m long			
Markoh		and 5-6 m thick.	Bowersox and Chamberlin, 1995	32.767	60.967
Masjet			Chmyriov and others, 1973		
Mawi*		Markle is 200 450 m 41 1 0 11 1 1	Bowersox and Chamberlin, 1995	35.167	70.200
		Marble is 300-450 m thick. Suitable for	Ab dullab and ath 1077		
Manualana		cement or ornamental stone. Five areas have	Abdullah and others, 1977;	0.4.65	/07
Maydan		been mined since 1940's.	ESCAP, 1995	34.433	68.783
Maudan		Cu-bearing quartz vein at least 500 m long and		24 472	40.770
Maydan		0.5-6.0 m thick.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977; Afzali,	34.473	68.770
		17 mineralized greisen zones 50-500 m long	1981; Bowersox and Chamberlin,		
Maydan-Ahu		and 5-60 m wide.	1981; Bowersox and Chamberlin,	32.773	66.911
ivia yuai i-Ai iu		and 5-00 III wide.	Abdullah and others, 1977;	32.113	00.911
Maymana		Mined by evaporation.	Bowersox and Chamberlin, 1995	36.100	64.708
···aj···aria	<u> </u>	immod by ovaporation.	Bowerson and Onambernit, 1975	55.100	04.700

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Maymay			Badakhshan	38-25-00N	71-02-00E	SDG		Active mine?	Quaternary?	alluvium	sand and gravel
Mazar-Kol			Bamian	35-14-40N	67-53-32E	COA	sedimentary	Occurrence	Early to Middle Jurassic	carboniferous clay	coal
Miller		Desire Veller	Vi	25 25 20N	(0.4/.455	GEM	veins, shear zone,	Antico Mine (10050	Ordenision	carbonate rocks; gabbro, diorite, quartz porphyry dikes,	emerald; quartz, ankerite, pyrite,
Mikeni		Panjshir Valley	Kapisa	35-25-20N	69-46-45E	GEIVI	hydrothermal?	Active Mine (19950	Ordovician;	carbonate skarn, schist	phlogopite, albite, tourmaline
Minora			Ghowr	34-10N	63-58E	Cu Pb Zn	shear zone, vein	Occurrence	Early to Middle Jurassic	limestone, shale, siltstone	Cu sulfides, secondary Cu minerals
Minora II			Ghowr	34-09N	63-59E	Pb Cu Zn		Occurrence	Triassic	siltstone	
Mir-Ali Mirkalwat*		Jegdalek	Herat	33-54N	62-12E	Cu Zn GEM		Occurrence Active mine (1995)	Early Cretaceous; Eocene-Oligocene	calcareous sediments; granite porphyry, quartz porphyry, diorite porphyry	malachite, azurite, chalcopyrite, pyrite, fluorite ruby
Will Kalwat		Jegualek						Active Hime (1773)	Late Triassic; Late		
Mirzaka			Ghazni	32-56-37N	67-41-46E	Au Ag Sn	skarn	Occurrence	Cretaceous-Paleocene	calcareous rocks; diorite	
Mirzakhan			Kabol	34-24-05N	69-21-35E	Cu		Occurrence	Vendian-Cambrian	marble	
Mirza-Wolang			Jowzjan	36-01N	65-45E	COA	sedimentary	Occurrence	Middle to Late Triassic		coal cassiterite, stannite, galena,
Misgaran			Herat	33-49-30N	62-06-00E	Sn Pb Zn Cu Fe	skarn	Past producer	Early Cretaceous	sandstone, siltstone, shale, limestone	magnetite, pyrite, chalcopyrite, pyrrhotite, sphalerite, marcasite
Mohammad Agha							Skurri	r ast producer	Early orclaceous	Situic, infestorie	pyrmotte, spriaiente, mareaste
(deposit no. 2) Mualevi*			Kabol	34-13N 35-46N	69-08E 71-05E	Cr GEM					A
Mugur*			Konar Ghazni	32-56N	67-44E	Au					tourmaline
										siltstone, limestone;	
Mullayan			Ghowr	33-26N	64-22E	Hg S		Occurrence	Early Cretaceous;	diorite, diorite porphyry	
Murghab* Murghan Darra			Badghis Badakhshan	35-07N 38-17-30N	64-12E 71-18-30E	SDG			Quaternary?	alluvium	sulfur sand and gravel
Mushkan				32-57N	63-53E	Нд	hydrothermal	Occurrence	Early Cretaceous		cinnabar
			Farah				nydrotnermai	Occurrence	Larry Cretaceous	porphyritic dikes	Cirillabai
Muzdan			Helmand	29-34N	63-58E	Arag		Occurrence, D	Eocene-Oligocene	volcanics	aragonite
Myen Boldak			Kandahar	30-56N	66-18E	Fe		Occurrence	Late Cretaceous	limestone, dolomite	siderite
Nadr			Bamian	35-26-25N	67-48-03E	Gyp		Occurrence, D	Late Cretaceous - Paleocene	dolomite, clay, limestone	
Nakhchir-Par			Badakhshan	37-21-00N	71-05-50E	Au		Occurrence	Late Triassic-Middle Jurassic	sandstone, hornfels	pyrite, pyrrhotite, chalcopyrite, magnetite
Nalag	Tala		Baghlan	35-25-16N	68-09-20E	Al		Occurrence	Jurassic; Late Triassic	carboniferous rocks; volcanics	bauxite
Nalak			Baghlan	32-24-06N	68-12-30E	Gyp		Occurrence, D	Late Jurassic	sandstone, clay	gypsum
Nalak			Baghlan	32-24-02N	68-10-40E	COA	sedimentary	Occurrence	Early-Middle Jurassic	carboniferous clay	coal
										weathered diorite	
Nalak			Baghlan	35-25-27N	68-09-26E	Cly	Supergene	Occurrence	Late Triassic	porphyry	clay

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
	Speculative 3 Mm ³		Abdullah and others, 1977;		
Maymay	(1977)	A 30 m high terrace on the Panj River.	Bowersox and Chamberlin, 1995	38.417	71.033
		Numerous lustrous coal lenses and seams 1-6	Abdullah and others, 1977;		
Mazar-Kol		cm thick.	Bowersox and Chamberlin, 1995	35.244	67.892
		Altitude: 4656 m. In Panjsher Valley. Quartz-	Bowersox and Chamberlin, 1995;		
		ankerite veins. Panjshir Valley emerald mines	Kazmi and Snee, 1989; Bowersox,		
Mikeni		in an area 8 by 40 km.	1985; Bowersox and others, 1991	35.422	69.779
WIKEIII		Ferruginous shear zone, 1500-2000 m long,	1705, Dowersox and others, 1771	33.422	07.777
		contains quartz veins and veinlets with	Abdullah and others, 1977:		
Minora		sulfides. Minor Pb-Zn minerals are present.	Bowersox and Chamberlin, 1995	34.167	63.967
WIII IOI a		Quartz veins showing strong ferruginous	Bowersox and Chamberlin, 1995	34.107	03.707
		alteration occur in fault zone in poorly	Abdullah and others, 1977;		
Minora II		consolidated siltstone.	Bowersox and Chamberlin, 1995	34.150	63.983
IVIII IOI a II		consolidated sitistorie.	Bowersox and Chamberlin, 1995	34.150	03.903
		Silicified lens and epidotized breccias contain	Abdullah and others, 1977;		
Mir-Ali		mineralization.	Bowersox and Chamberlin, 1995	33.900	62.200
Mirkalwat*		Largest ruby mine.	Bowersox and Chamberlin, 1995		
		Mineralized skarn and serpentinized areas at	Abdullah and others, 1977;		
Mirzaka		contact of Late Triassic rocks with diorite.	Bowersox and Chamberlin, 1995	32.944	67.696
		2 Cu-bearing zones; one is 800 m long and 10-			
		35 m thick, the other 500 m long and 10-20 m	Abdullah and others, 1977;		
Mirzakhan		thick.	Bowersox and Chamberlin, 1995	34.401	69.360
		4 coal beds, 0.1-1.2 m thick, can be traced for			
		200-300 m along strike. Coal is lean, non-	Abdullah and others, 1977;		
Mirza-Wolang	14.3-35.1% ash	caking, difficult to dress.	Bowersox and Chamberlin, 1995	36.017	65.750
, , , , <u>, , , , , , , , , , , , , , , </u>		Mineralized zone is 2.5 km long and 50-300	ESCAP, 1995; Abdullah and		
	0.01-6.61% Sn (aver.	km wide and up to 270 m deep. Deposit was	others, 1977; Bowersox and		
Misgaran	<0.1%)	mined by ancient miners.	Chamberlin, 1995	33.825	62.100
Mohammad Agha	,				
(deposit no. 2)			Bowersox and Chamberlin, 1995	34.217	69.133
Mualevi*			Bowersox and Chamberlin, 1995	35.767	71.083
Mugur*			Bowersox and Chamberlin, 1995	32.933	67.733
magai		2 areas of quartz-dickite metasomatites are	Abdullah and others, 1977;	02.700	07.700
Mullayan		mineralized.	Bowersox and Chamberlin, 1995	33.433	64.367
Murghab*		Timio anzoa	Bowersox and Chamberlin, 1995	35.117	64.200
War griab	Speculative 5 Mm3		Abdullah and others, 1977;	33.117	04.200
Murghan Darra	(1977).	Terrace on the Panj River.	Bowersox and Chamberlin, 1995	38.292	71.308
ividi griari Darra	(1777).	A mineralized hydrothermally altered zone.	Bowersox and chamberin, 1773	30.272	71.300
		180 m long and 1.0 m thick, occurs along the	Abdullah and others, 1977;		
Mushkan		contacts of porphyry dikes.	Bowersox and Chamberlin, 1995	32.950	63.883
IVIUSITATI	Speculative 11,800 t	contacts of porpriyry dikes.	Abdullah and others, 1977;	32.930	03.003
Muzdan	aragonite	3 tabular bodies, 200 m long and 1-2 m thick.	Bowersox and Chamberlin, 1995	29.567	63.967
IVIUZUALI	ai aguille	4 cross-cutting siderite veins are up to 400 m	Abdullah and others, 1977;	27.307	03.707
Myen Boldak		long and 10 m thick.	Bowersox and Chamberlin, 1995	30.933	66.300
IVIYETI DUIUAK		Gypsum-bearing sequence forms small inlier in	bowersox and Chamberlin, 1995	30.733	00.300
		an Eocene formation. Gypsum is up to 12 m	Abdullah and others, 1977:		
NII-				25 440	77.001
Nadr		thick.	Bowersox and Chamberlin, 1995	35.440	67.801
Nalikakia Da		Hornfels-silicified zone with sulfide	Abdullah and others, 1977;	07.055	74.00=
Nakhchir-Par	Consolidative 4 F M4	mineralization.	Bowersox and Chamberlin, 1995	37.350	71.097
	Speculative 4.5 Mt	10 tabular bauxite bodies at contact of	Abdullah and others, 1977;	05 :::	(0.4-)
Nalag	bauxite	carboniferous rocks and volcanics.	Bowersox and Chamberlin, 1995	35.421	68.156
			Abdullah and others, 1977;		
Nalak		Several gypsum beds, each up to 12 m thick.	Bowersox and Chamberlin, 1995	32.402	68.208
			Abdullah and others, 1977;		
Nalak		5 coal beds 26-50 cm thick.	Bowersox and Chamberlin, 1995	35.401	68.178
			Abdullah and others, 1977;		
			ESCAP, 1995; Bowersox and		
Nalak	I	13 m thick bed. Refractory clay.	Chamberlin, 1995	35.424	68.157

							1	1	1		T
Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
										calcareous and clayey-	sphalerite, galena, boulangerite,
Nalbandon			Ghowr	34-07N	63-55E	Zn Pb	hydrothermal	Occurrence, D	Triassic	siliceous rocks	pyrite, chalcopyrite, pyrrhotite
Nalbandan-Sarghol			Ghowr	34-15N	63-46E	Zn Pb					
Namakab			Takhar	36-31-04N	69-41-16E	COA	sedimentary	Occurrence, D	Late Jurassic		coal
Namaksar			Herat	34-05N	60-45E	Bri Hal	brine	Active Mine (1977), D	Recent		halite
Namakaar Taabauraban	Car i Namak					Mg Li Hal	brine	Active Small Scale mining (1975)			halite, gypsum
Namaksar Tashqurghan Namaksar Andkhui*	Sai-i-ivairiak		Fariab	36-37N	65-04E	Bri Hal	brine	Itiliting (1975)			salt
								Active Small Scale			
Namaksar Heart	Kol-i-Namaksar		Herat	34-05N	60-46E	Bri Hal	brine, evaporite	mining (1975)			halite
Namaksar Tashkanhan*			Samangan	36-57N	67-27E	Bri Hal	brine, evaporite				halite
Nangalam	Nanghalam	Parun Field - Waigal Zone	Nangarhar	34-59-27N	70-53-22E	Li	pegmatite	Occurrence	Proterozoic	schist, marble	spodumene, rubellite, tourmaline
Ivangalam	rvangnalam	waigai zone	Ivarigarriai	34-37-2711	70-33-22L	Li	pegmatite	occurrence	1 Toter ozoic	Scriist, marbie	spodamene, rabeinte, toarmanne
								Small active			
Narin Narzi*			Baghlan Konar	36-02-23N 35-12N	69-09-48E 71-32E	COA TIC	sedimentary	producer (1977)	Early to Middle Jurassic		coal talc
Nawai-Kan*			KUIIAI	33-12N	71-32E	GEM		Active mine (1995)			ruby
Namedalaa			Charati	22 AEN	/7.4/5	Deet		Small active			
Nawdeho		Eshkashem	Ghazni	33-45N	67-46E	Peat	sedimentary	producer	Carboniferous-Early		peat
Nawshah		Pegmatite Field	Badakhshan	36-38N	71-45E	Li Sn	pegmatite	Occurrence	Permian; Oligocene	schist; granite	spodumene; minor cassiterite
				04.041	(0.075					volcanics, sandstone,	
Nayak			Herat	34-26N	62-27E	Hg Cu	hydrothermal	Occurrence	Eocene Carboniferous-Early	conglomerate	cinnabar
									Permian; Late		
Naylak	Neylak		Ghazni	33-18-30N	67-24-40E	Fe B		Occurrence	Cretaceous-Paleocene	limestone, slate; diorite	magnetite, ludwigite
Nemakab*			Takhar	36-43N	69-37E	Hal					halite galena, sphalerite, arsenopyrite,
Neshebdur			Badakhshan	37-35-53N	70-36-31E	Au	vein	Occurrence	Proterozoic	gneiss	pyrite, chalcopyrite
				35-11-18N to	70-15-36E to	Be Ta Li Sn Nb					beryl, tantalite, kunzite, spodumene, lepidolite, cleavelandite, cassiterite, schorl, microcline, albite, tourmaline,
Nilaw deposit			Laghman	35-15-36N	70-18-10E	Cs Rb	pegmatite	D	Early Cretaceous	diorite, gabbro	pollucite
Nilaw-Kolum* Nilaw-Kolum*			Laghman Laghman	35-10N 35-12N	70-21E 70-20E	GEM GEM					beryl tourmaline
Nilaw-Kolum*			Laghman	35-12N 35-14N	70-20E 70-18E	GEM					aquamarine
				33-43-20N to	66-07-00E to						
Nili Nioni Chala Spai*		loadalak	Oruzgan	33-46-00N	66-12-30E	W		Occurrence	Oligocene	granite	scheelite, wolframite, Cu sulfides
Njoni-Ghala-Spai*		Jegdalek		+	+	GEM		Active mine (1995)		valley alluvium- sandy	ruby
Nooraba			Takhar			Au				argillaceous rock	native gold
Nooraba,			Takhar	37-29N to 37- 36N	69-49E to 69- 54E	Δ.,	placer			valley alluvium- sandy	native gold
Khasar, Anjir			Takhar	JOIN	J4E	Au	placer			argillaceous rock	native gold
North Farenjal			Parvan	35-00-30N	68-41-00E	Ва	vein	Occurrence	Ordovician;	limestone	barite
Northern Khanneshin			Helmand	30-29-40N	63-35-00E	U Th REE	breccia	Occurrence		sandy clay	
INOLUIETTI KITATITESIIII			riennailu	3U-27-4UN	03-33-UUE	O III KEE	DI ECCIA	occurrence	Late Jurassic-Early	quartz keratophyre;	pyrite, chalcopyrite, malachite,
Northern Occurrence			Herat	33-43N	61-12E	Cu	hydrothermal	Occurrence	Cretaceous;	diabase dikes	azurite
Northern Placer			Farah	33-11N	61-43E	Sn	placer	Occurrence	Quaternary	alluvium	cassiterite
Nukrakhana*			Parwan	35-08N	69-12E	Fe					hematite

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
			Abdullah and others, 1977;		
	2 Mt @ 5.77% Zn.		ESCAP, 1995; Jankovic, 1984;		
	0.88% Pb, 6.64% Pb +	Mineralized fault zone up to 850 m long, 3-9 m			
Nalbandon	Zn	thick.	Chamberlin, 1995	34.117	63.917
Nalbandan-Sarghol		thor.	Bowersox and Chamberlin, 1995	34.250	63.767
			Abdullah and others, 1977;		
Namakab	Speculative 5 Mt	Coal seam 1.05-3.90 m thick.	Bowersox and Chamberlin, 1995	36.518	69.688
	·		Abdullah and others, 1977;		
Namaksar		Salt lake.	Bowersox and Chamberlin, 1995	34.083	60.750
		Area is relatively unfavorable for development			
Namaksar Tashqurghan		of evaporation ponds. Salt is mined for sheep.	Smith, 1975		
Namaksar Andkhui*			Bowersox and Chamberlin, 1995	36.617	65.067
			Smith, 1975; Bowersox and		
Namaksar Heart		Halite is mined for table salt.	Chamberlin, 1995	34.083	60.767
Namaksar Tashkanhan*			Bowersox and Chamberlin, 1995	36.950	67.450
			Rossovskiy and others, 1976b;		
		Pegmatite dikes 15-150 m long and 0.5-4.0 m	Abdullah and others, 1977;		
Nangalam		thick.	Bowersox and Chamberlin, 1995	34.991	70.889
		In an area of about 3 km2, there are 4 coal			
		beds 0.90-4.40 m thick. Being mined for local			
Narin		needs.	Bowersox and Chamberlin, 1995	36.040	69.163
Narzi*			Bowersox and Chamberlin, 1995	35.200	71.533
Nawai-Kan*			Bowersox and Chamberlin, 1995 ESCAP, 1995; Abdullah and		
		Peat is 1.0-1.5 m thick and covers an area of	others, 1977; Bowersox and		
Nawdeho		12 km ² . Worked by hand.	Chamberlin, 1995	22.750	47747
Nawueno		15 pegmatite dikes 50-100 m long and 1-3 m	Abdullah and others, 1977;	33.750	67.767
Nawshah		thick.	Bowersox and Chamberlin, 1995	36.633	71.750
INGWSHGH		Mineralization occurs in hydrothermally altered		30.033	71.730
Nayak		zones.	Bowersox and Chamberlin, 1995	34.433	62.450
rvayan		Borosilicate mineral is present. 7 lenticular	Develope and chambering 1776	011100	02.100
		magnetite-ludwigite bodies up to 20 m long	Abdullah and others, 1977;		
Naylak		and 3.5 m thick.	Bowersox and Chamberlin, 1995	33.308	67.411
Nemakab*			Bowersox and Chamberlin, 1995	36.717	69.617
		3 quartz veins 120-360 m long and 1.5-4.0 m	Abdullah and others, 1977;		
Neshebdur	0.2-1.1 g/t Au	thick with disseminated sulfides.	Bowersox and Chamberlin, 1995	37.598	70.609
i I					
i			ESCAP, 1995; Abdullah and		
	0.1 Mt Li ore; 1000 t		others, 1977; Bowersox and	35.188 to	70.260 to
Nilaw deposit	beryl		Chamberlin, 1995	35.260	70.303
Nilaw-Kolum*			Bowersox and Chamberlin, 1995	35.167	70.350
Nilaw-Kolum*			Bowersox and Chamberlin, 1995	35.200	70.333
Nilaw-Kolum*		Coursel and a second selection with W	Bowersox and Chamberlin, 1995	35.233	70.300
NIII:		Several greisen areas and veins with W	Abdullah and others, 1977;	22.700	// 222
Nili		mineralization.	Bowersox and Chamberlin, 1995	33.722	66.208
Njoni-Ghala-Spai*	Indicated + Inferred	Very large mine with dark red crystals. Placer is 3800 m long and 10-150 m wide.	Bowersox and Chamberlin, 1995		
Nooraba		Pay streak is close to bedrock.	Abdullah and others, 1977		
Nooraba,	210 kg Au	ray streak is close to bedrock.	Abdullah and others, 1977;	37.483 to	69.817 to
Khasar, Anjir		3 valley placers.	Bowersox and Chamberlin, 1995	37.463 10	69.900
masar, Arijii		o valley placets.	Abdullah and others, 1977;	37.000	07.700
North Farenjal	Approx. 97% barite	Vein is 200 m long and 2 m thick.	Bowersox and Chamberlin, 1995	35.008	68.683
 	1-1		ESCAP, 1995; Abdullah and	22.300	22.300
	0.006-0.015% U and	Associated with a silicified shear zone up to	others, 1977; Bowersox and		
Northern Khanneshin	0.002-0.010% Th	2000 m long and 25 m wide.	Chamberlin, 1995	30.494	63.583
		Foliated, hydrothermally-altered zone over	Abdullah and others, 1977;		
	1			1	
Northern Occurrence		1500 m long and 120-150 m wide.	Bowersox and Chamberlin, 1995	33.717	61.200
Northern Occurrence	Speculative 11.5t	1500 m long and 120-150 m wide. Placers in alluvial fans and talus, large creek	Bowersox and Chamberlin, 1995	33.717	61.200
Northern Occurrence Northern Placer Nukrakhana*	Speculative 11.5t cassiterite		Abdullah and others, 1977 Bowersox and Chamberlin, 1995	33.717 33.183 35.133	61.200 61.717 69.200

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Nukra-Khana	Includes Tele-Panjsher		Kapisa	35-35N	69-54E	Fe	metasedimentary?	Occurrence	Proterozoic	limestone	hematite, limonite, siderite
Nusay			Badakhshan	38-26-40N	70-50-00E	SDG		Active producer (1977)	Quaternary?	alluvium	sand and gravel
										limestone, oolitic	
Obato-Shela	Ovatu-Shela		Zabol	31-58N to 32- 03N	66-12E to 66- 22E	AL	residual	Occurrence, D	Middle to Late Jurassic	limestone, argillite, siltstone	bauxite
Obato-Si leia	Ovatu-Sriela		Zaboi	0314	ZZL	AL	residual	Occurrence, D	Wilder to Late 3d assic	sandstone, argillaceous	bauxite
Oilokhak			Balkh	35-41N	67-05E	COA	sedimentary	Occurrence	Early to Middle Jurassic	shale	coal
Okhan-Kashan						Cu	copper porphyry	Occurrence	Miocene	diorite porphyry	Cu sulfides
Oruzgan	Oruzghan		Oruzgan	32-55-20N	66-39-20E	W Bi	skarn	Occurrence	Oligocene; Late Triassic- Early Jurassic	granodiorite; marble	scheelite, chalcopyrite, sphalerite, bismuthinite, garnet
									Oligocene; Late		pyrite, chalcopyrite, malachite,
Outcrop no. 1305			Zabol	32-36-32N	66-37-16E	Cu		Occurrence	Devonian	granodiorite; limestone	wollastonite
Outcrop no. 543			Zabol	32-20-23N	66-35-16E	Au Cu		Occurrence	Vendian-Cambrian	limestone	chalcopyrite, chrysocolla
									Late Cretaceous- Paleocene; Middle-Late		
Outcrop no. 7273			Zabol	32-02-34N	66-18-16E	Cu Au	skarn	Occurrence	Jurassic	diorite; limestone	chalcopyrite
,											
Outcrop no. 914			Oruzgan	32-41-00N	66-28-30E	Cu Bi		Occurrence	Oligocene	granitic rocks	
		Pachaghan						Intermittent	Proterozoic; Early		
Pachaghan	Pachighan	Pegmatite Field	Parvan	35-02-03N	69-43-10E	Mica Be	pegmatite	producer	Cretaceous	; gabbro, diorite-gabbro	muscovite, beryl, albite
Pachi			Lowgar	34-14-05N	69-16-50E	Cu		Occurrence	Vendian-Cambrian		
Pachigram	Pachighram		Nangarhar	35-45-00N	71-11-40E	Gar	metamorphic	Active Small mine	Proterozoic	schist	garnet (almandine), staurolite
									Carboniferous-Early		spodumene, albite; minor
Pachigram	Pachighram	Pachighram	Nangarhar	35-45-54N	71-11-07E	Li Ta Nb	pegmatite	Occurrence	Permian; Oligocene	slate; granite	cassiterite, columbite-tantalite
Pachigram		Pegmatite Field	Nangarhar	35-50N	71-18E	Li	pegmatite	Occurrence			
g		- sgesiii					p-g				
Paghman			Kabol	34-40N	69-00E	Fe	magmatic	Occurrence	Early Cretaceous	gabbro, monzonite, diorite	magnetite, olivine
Pahra-Dar-Khana*		Jegdalek				GEM		Active mine (1995)			ruby
											spodumene, microcline, albite;
Pakawalpet		Parun Field	Nangarhar	35-33-44N	71-07-24E	Li	pegmatite	Occurrence	Late Triassic	schist	minor cassiterite, columbite- tantalite
Takawaipot		T di di T i cia	rangama		7.072.12		pogmatito	00041101100	Edito Tridosio	Somst	tarranto
Palanghar			Kabol	34-20-00N	69-17-55E	Cu		Occurrence	Vendian-Cambrian	marble, slate	
Palang-Khana			Ghowr	34-09N	64-01E	Pb Zn		Occurrence	Early Cretaceous	sandstone, siltstone	galena
g			Onom.								3
Palang-Sor			Herat	34-00N	63-00E	Fe		Small past producer	Late Triassic	sediments	
Palowana			Herat	34-23-50N to 34-26-08N	62-46-45E to 62-48-15E	COA	sedimentary	Occurrence	Early Carboniferous		coal
Panawuk			Helmand	29-34N	63-54E	Arag		Occurrence	Eocene-Oligocene	volcanics	aragonite
. G. G. WORK				27 5414	00 045			SSSMITCHES	Localie-Oligocetie	terrigenous carbonate	a. agoto
			1			l				rocks; diorite porphyry	
Panjshah			Ghowr	33-27N	64-19E	Hg		Occurrence	Early Cretaceous;	dikes	cinnabar
Panjsher	Panjshir		Kapisa	35-32-30N	69-52-30E	Fe		Occurrence	Proterozoic	marble	hematite
Papruk*			Konar	36-30N	71-09E	GEM					aquamarine
Papruk*			Konar	35-36N	71-10E	COLL					smoky quartz

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
			Abdullah and others, 1977:		
		Lenses, beds, and veins of several hundreds to	ESCAP, 1995: Bowersox and		
Nukra-Khana	60-65% Fe	thousands of meters long and 2-19 m thick.	Chamberlin, 1995	35.583	69.900
Nusay	Speculative 16 Mm ³ (1977)	In lower terraces of the Panj River.	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	38.444	70.833
ivusuy	Speculative 30-35 Mt	in lower terraces of the Farij River.	Abdullah and others, 1977;	30.444	70.000
i	@ 50% Al ₂ O ₃ , 11.5%	Deposits in 19 km ² graben-syncline and are up		31.967 to	66.200 to
Obato-Shela	SiO ₂	to 250 m long and 5-6 m thick.	Chamberlin, 1995	32.050	66.367
	0.02	2 "argillaceous shale coal beds" that are 5-15	Abdullah and others, 1977;		
Oilokhak		m thick. Coal is strongly weathered.	Bowersox and Chamberlin, 1995	35.683	67.083
Okhan-Kashan	0.01-2.2% Cu	Mineralization over area of about 15 km ² .	Chmyriov and others, 1973		
		Mineralized garnetiferous skarns are up to 40	Abdullah and others, 1977;		
		m thick. ESCAP (1995) lists longitude as 66-	ESCAP, 1995; Bowersox and		
Oruzgan	0.48% WO ₃	55-20E in body of report.	Chamberlin, 1995	32.922	66.656
		Mineralized serpentinized rocks at contact of			
i		granite and limestone form area 60 m long and	Abdullah and others, 1977;		
Outcrop no. 1305		0.3-3.0 m thick.	Bowersox and Chamberlin, 1995	32.609	66.621
		Brecciated and serpentinized fault zone is 100			
		m long, 1.5-2.5 m thick, and contains	Abdullah and others, 1977;		
Outcrop no. 543		disseminated mineralization.	Bowersox and Chamberlin, 1995	32.340	66.588
		Skarns up to 100 m long and 7 m thick contain			
Outcrop no. 7273		disseminated mineralization.	Bowersox and Chamberlin, 1995	32.043	66.304
		Mineralized quartz vein 100 m long and 0.5-	Abdullah and others, 1977;		
Outcrop no. 914		4.5 m thick.	Bowersox and Chamberlin, 1995	32.683	66.475
	Inferred 490 t of mica		Abdullah and others, 1977;		
	(for Dikes 1, 3, 4); 90.5 t		ESCAP, 1995; Bowersox and		
Pachaghan	beryl	To 1973, 400 t of raw mica mined. A Cu-bearing zone in albitized rocks is 400 m	Chamberlin, 1995	35.034	69.719
Pachi		long and 4-48 m thick.	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	34.235	69.281
Pacili		iong and 4-46 m mick.	Abdullah and others, 1977;	34.233	09.201
Pachigram		Crystals 1-50 mm long.	Bowersox and Chamberlin, 1995	35.750	71.194
r acriigram		About 20 pegmatite dikes 50-150 m long and	Abdullah and others, 1977;	33.730	71.174
Pachigram		1-3 m thick.	Bowersox and Chamberlin, 1995	35.765	71.185
Pachigram		Latitude-long is estimated.	ESCAP, 1995	35.833	71.300
r dorngram		Editidd forig is ostimated.	Abdullah and others, 1977;	00.000	71.000
			Chmyriov and others, 1973; Afzali,		
			1981; Bowersox and Chamberlin,		
Paghman	0.047 Mt @ 67% Fe	2 magnetite lenses, each about 35 m long.	1995	34.667	69.000
Pahra-Dar-Khana*		Material does not have good color, too pale.	Bowersox and Chamberlin, 1995		
			Rossovskiy and others, 1976b;		
		30-35 pegmatite dikes 100-500 m long and 2-	Abdullah and others, 1977;		
Pakawalpet	10-25% spodumene	10 m thick.	Bowersox and Chamberlin, 1995	35.562	71.123
			Abdullah and others, 1977;		
Palanghar		3 Cu-bearing zones.	Bowersox and Chamberlin, 1995	34.333	69.299
D 1 1/1		Altered rocks in zone 300-400 m long and up	Abdullah and others, 1977;	04450	(4047
Palang-Khana		to 10 m thick with disseminated galena.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977; Afzali,	34.150	64.017
	Constitution O.F.Mt. and	6 (0 b.: 100 ii W b.:			
Dalana Sor	Speculative 0.5 Mt ore	Gossan 60 m by 180 m in size. Worked by	1981; Bowersox and Chamberlin, 1995	34.000	63.000
Palang-Sor	@ 47.80-59.22% Fe	hand up to 1925. 4 areas with a few strongly crumpled coal	Abdullah and others, 1977;	34.000 34.397 to	
Palowana		beds.	Bowersox and Chamberlin, 1995	34.397 10	62.779 10
i aiowalia	Speculative 1000 t	Deus.	Abdullah and others, 1977;	34.430	02.804
Panawuk	aragonite (1977)	Tabular body 12 m in diameter and 3 m thick.	Bowersox and Chamberlin, 1995	29.567	63.900
I GHGWUK	aragonite (1777)	Tabalar body 12 mm diameter and 3 m tillex.	DOWGISON and Chamberlin, 1995	27.307	03.900
			Abdullah and others, 1977;		
Panjshah		Altered rocks with Hg mineralization.	Bowersox and Chamberlin, 1995	33.450	64.317
. ,		Hematite-bearing areas 3000-5000 m long and		22.100	2317
Panjsher		10-20 m thick.	Bowersox and Chamberlin, 1995	35.542	69.875
Papruk*			Bowersox and Chamberlin, 1995	36.500	71.150
Papruk*			Bowersox and Chamberlin, 1995	35.600	71.167

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
											tourmaline, spodumene, beryl,
								Active Small mine			albite, cleavelandite, topaz,
Papruk	Paprowk	Parun Field	Konar	35-36-30N	71-10-00E	GEM Li	pegmatite	(1995)	Late Triassic	slate	lepidolite
5				05 0011	(0.005						
Parandeh Parian*			Parvan Kapisa	35-22N 35-50N	69-28E 70-10E	Mica GEM		Occurrence	Proterozoic	gneiss	muscovite amethyst
i dilali			каріза	33-3014	70-10L	OLIVI				sedimentary rocks;	ametriyst
Pasaband			Oruzgan	33-40-40N	64-51-00E	Hg	hydrothermal	Occurrence	Early Cretaceous;	diorite porphyry dikes	cinnabar
											spodumene, tantalite, columbite,
Pasghushta deposit		Parun Field	Nangarhar	35-23-34N	71-00-52E	Li Ta Nb Sn	pegmatite	Occurrence, D	Late Triassic	slate	cassiterite, albite, microcline
Pasghushta, Lower		Parun Field	Nangarhar	35-22-53N	71-03-06E	Li	pegmatite	Occurrence, D	Late Triassic	slate	spodumene, albite, microcline, muscovite, quartz
											·
Dockhi		Parun Field	Nangarhar	25 17 20N	70-57-30E	Li To Db Co	pagmatita	Oggustanas D	Late Triaggie		spodumene, cleavelandite, pollucite, microcline, albite, beryl
Paskhi Pechaghan*		Parun Field	Nangarhar Kapisa	35-17-30N 35-02N	69-43E	Li Ta Rb Cs GEM	pegmatite	Occurrence, D	Late Triassic		beryl
Peranjal*			Parvan	35-10N	68-50E	Ва					barite
								Small active			
Petaw			Kandahar	32-09-31N	65-41-39E	Qtz	vein	producer	Oligocene	granite	quartz, minor smoky topaz
Pinawi			Badakhshan	35-59N	70-38E	Fe	shear zone	Occurrence	Oligocene	granite	siderite, limonite, chalcopyrite
Pir Khana			Ghazni	34-49-40N	67-25-50E	Fe Pb Zn	shear zone	Occurrence	Cambrian	limestone	limonite, martite
Pir-i-Surkh			Herat	34-03N	62-27E	Gyp		Active Small producer (1977)	Late Cretaceous	limestone	gypsum
Pramgal	Prangal		Nangarhar	35-23-34N	71-04-50E	Li		Occurrence	Late Triassic	slate	spodumene, microcline, albite
Pridorozhnyy	J		9			Li	pegmatite				spodumene
											chalcopyrite, chalcocite, malachite, molybdenite, galena,
Pudar	Podar		Herat	33-50N	62-33E	Cu Bi	skarn	Occurrence	Oligocene	granite	cerussite, cassiterite, gold
									Late Cretaceous-		
Pul-i-Khumry	Pur-i-Khumry		Baghlan	35-58-24N	68-40-56E	Lst	sedimentary	Active (1995)	Paleocene	limestone	limestone, marl
Pushma-i-Bidak			Ghowr	34-08N	64-45E	Gyp		Occurrence	Pliocene	sandstone	gypsum
Pusht-koh			Herat	34-09N	62-10E	Gyp		Active Small producer (1977)	Late Cretaceous	limestone	gypsum
								, , ,	Early Cretaceous;	siltstone, sandstone;	
Pushwara			Ghowr	33-20N 36-05N to 36-	64-33E 70-08E to 70-	Hg		Occurrence	Miocene	porphyritic dikes schist, amphibolite,	cinnabar
Pusida			Takhar	10N	11E	Au	vein	Occurrence	Proterozoic	gneiss	gold
										carbonate-terrigenous rocks; diorite porphyry	cinnabar, pyrite, arsenopyrite,
Qalat			Oruzgan	33-47-21N	65-05-27E	Hg		Occurrence	Early Cretaceous;	dikes	realgar
Qara Jelga	Qara-Jelga		Badakhshan	37-14-35N	74-25-14E	Bi Sn		Occurrence	Oligocene	granite	cassiterite, pyrite, chalcopyrite
Qarya-i-Baki			Ghazni	32-55-30N	66-52-30E	Bi Cu W		Occurrence	Oligocene; Late Permian	granite; dolomitic limestone	pyrite, chalcopyrite, bornite, sphalerite, magnetite

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
		Pegmatite zone is about 65 km long with			
		pegmatite dikes up to 2000 m long. Gem	Bowersox and Chamberlin, 1995;		
		tourmaline-bearing dikes are commonly 50-60	Bogatskiy and others, 1978;		
Papruk		m long and 5-8 m thick.	Abdullah and others, 1977	35.608	71.167
		Small pegmatite dikes 40-60 m long and 2-3	·		
		m thick. Muscovite is low grade due to	Abdullah and others, 1977;		
Parandeh		jointing, corrugation, and quartz inclusions.	Bowersox and Chamberlin, 1995	35.367	69.467
Parian*			Bowersox and Chamberlin, 1995	35.833	70.167
		Hydrothermally altered breccia beds, 400 m	Abdullah and others, 1977;		
Pasaband		long and 3-8 m thick, with Hg mineralization.	Bowersox and Chamberlin, 1995	33.678	64.850
	49 Mt @ 2.14% Li ₂ O				
	and 0.0048% TaO₅				
	(1977); Speculative		Abdullah and others, 1977;		
	1.05 Mt Li₂O to 100 m	Pegmatite zone is over 10 km in length and 30-	ESCAP, 1995; Bowersox and		
Pasghushta deposit	depth (1974)	250 m wide.	Chamberlin, 1995	35.393	71.016
	5.64 Mt @ 2.2% Li ₂ O		Abdullah and others, 1977, p.		
	(1977); Speculative		221; ESCAP, 1995; Rossovskiy		
	0.124 Mt LiO ₃ to 100 m	2 pegmatite dikes 500-700 m long and 20-25	and others, 1976b; Bowersox and		
Pasghushta, Lower	depth (1974)	m wide. Dikes are parallel.	Chamberlin, 1995	35.381	71.052
g,	7.5 Mt @ 1.7% Li ₂ O,				
	0.0016% TaO _s ,				
	0.0012% Rb + Cs		Abdullah and others, 1977;		
	(1977); Speculative		ESCAP, 1995; Rossovskiy and		
	0.127 Mt LiO ₂ to 100 m		others, 1976b; Bowersox and		
Paskhi	depth (1995)	Pegmatites in a 2 x 3.5 km area.	Chamberlin, 1995	35.292	70.958
Pechaghan*	deptii (1995)	Pegniatites in a 2 x 3.5 km area.	Bowersox and Chamberlin, 1995	35.292	
rechaghan			Bowersox and Chamberlin, 1775	33.033	07.717
Peranjal*		This site might be the same as Feranjal barite.	Bowersox and Chamberlin, 1995	35.167	68.833
r cranjai		This site might be the same as reranjar barne.	Abdullah and others, 1977;	33.107	00.000
		Coarsely crystalline guartz vein 500 m long	ESCAP, 1995; Bowersox and		
Petaw		and 2.5 m thick.	Chamberlin, 1995	32.159	65.694
. otav		Limonitic shear zone contains siderite veins 5-	Abdullah and others, 1977;	02.107	00.07
Pinawi		10 m long and 203 m thick.	Bowersox and Chamberlin, 1995	35.983	70.633
		Fault zone with Fe-rich lenses 35-55 m long	Abdullah and others, 1977;		
Pir Khana		and 5-10 m thick.	Bowersox and Chamberlin, 1995	34.828	67.431
			Abdullah and others, 1977;		
Pir-i-Surkh		Gypsum lenses up to 50 m long.	Bowersox and Chamberlin, 1995	34.050	62.450
		15-20 pegmatite dikes 100-400 m long and 2-	Abdullah and others, 1977;		
Pramgal		4 m thick.	Bowersox and Chamberlin, 1995	35.393	71.081
Pridorozhnyy			Rossovskiy and others, 1976b		
		Skarn and hornfels zones 10-15 m wide and up			
Pudar		to 100 m long with mineralization.	Bowersox and Chamberlin, 1995	33.833	62.550
		Several thousand square kilometers of	Abdullah and others, 1977;		
		limestone 300-500 m thick. Suitable for	ESCAP, 1995; Bowersox and		
Pul-i-Khumry		cement.	Chamberlin, 1995	35.973	68.682
Durchas I Di I I			Abdullah and others, 1977;	0.4.4	
Pushma-i-Bidak			Bowersox and Chamberlin, 1995	34.133	64.750
Ducht koh		Cupaum langes up to EC 1	Abdullah and others, 1977;	24.150	/01/7
Pusht-koh		Gypsum lenses up to 50 m long. 6 cinnabar occurrences in an area 2200 m by	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	34.150	62.167
Pushwara		700 m.	Bowersox and Chamberlin, 1995	33.333	64.550
ı ustiwala		700 III.	Abdullah and others, 1977;	36.083 to	
Pusida		Au-bearing quartz veins in shear zones.	Bowersox and Chamberlin, 1995	36.167	70.133 10
i usiud		na bearing quartz veins in snear zones.	Dowerson and Chambernit, 1995	30.107	70.103
		Shear zones in porphyry dikes have Hg	Abdullah and others, 1977;	1	
Qalat		mineralization.	Bowersox and Chamberlin, 1995	33.789	65.091
	0.06-0.10% Sn, 0.03%		Abdullah and others, 1977;	33.707	03.071
Qara Jelga	Cu, 0.01% Bi	In small fault zone.	Bowersox and Chamberlin, 1995	37.243	74.421
	,		Abdullah and others, 1977; Afzali,	22.10	
		Mineralized and silicified shear zone 700 m	1981; Bowersox and Chamberlin,		
		long and 10-40 m thick.	1995	32.925	66.875

	Suponum and Other	Deposit or									
Locality/Deposit Name	Synonym and Other Names or Spellings	District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Oonyo i Saraw			Ghazni	32-55N	66-57E	w		Occurrence	Oligogopo	grapita	scheelite
Qarya-i-Saraw								Past Small producer		granite carbonate-terrigenous	
Qasem			Ghowr	33-25-05N	64-37-14E	Hg		(1977)	Early Cretaceous	rocks	cinnabar
Rabatak area*			Baghlan	36-08N	68-33E	S					sulfur
Rabat-i-Sapcha			Herat	34-06-30N	62-19-00E	Zn Cu Pb		Occurrence Active Small	Proterozoic	limestone, slate, sandstone	chalcopyrite, malachite, galena, sphalerite
Rabot-i-Sapcha			Herat	34-05N	62-19E	Gyp		producer (1977)	Late Cretaceous	limestone	gypsum
Rafak	Refak		Samangan	35-31-49N	67-51-09E	Cly	sedimentary	Occurrence	Early Cretaceous	siltstone	clay
Rangin*			Oruzgan	34-08-52N	65-55-20E	Pb		Occurrence	Early Cretaceous	sandstone, siltstone	galena
Rawanak			Badakhshan	38-11-30N	70-32-40E	SDG			Quaternary?	alluvium	sand and gravel
Razer			Badakhshan	35-59N	70-44E	Fe		Occurrence	Late Triassic; Oligocene	slate; granite	siderite, limonite, chalcopyrite, malachite
Rishaw			Badakhshan	37-30-10N	70-38-05E	Au	vein	Occurrence	Early Carboniferous	limestone	
Nishaw			Badakrishari	37 30 1014	70 30 032	7.G	shear zone,	Occurrence	Early carbonic cas	carbonate rocks; diorite-	
Riwat	Rewat		Parvan	35-28-00N	69-52-30E	GEM	hydrothermal?	Occurrence	Ordovician	gabbro	emerald bornite, chalcocite, malachite,
Rjan			Kabol	34-16-36N	69-27-36E	Cu	shear zone	Occurrence	Vendian-Cambrian	greenstone slate	chalcopyrite, galena
		Eshkashim									spodumene, albite, cassiterite,
Road-Side		Pegmatite Field	Badakhshan	36-40N	71-40E	Li Sn	pegmatite	Occurrence	Early Triassic	slate	beryl
Robaty-Payin			Badakhshan	37-55-25N	71-34-45E	COLL Ca	breccia	Occurrence	Middle Jurassic	breccia	calcite crystals
Rode-Duzd			Farah	32-44N	63-03E	Cu		Occurrence	Eocene-Oligocene	andesite	malachite, azurite
Rod-i-Karuh			Herat	34-34-50N	63-08-20E	Fe		Occurrence	Late Permian	tuff, phyllitic slate	magnetite, hematite, martite
Rod-i-Sanjur	Rod-i-Sangur		Herat	34-26N	62-44E	Lst	sedimentary	Occurrence?	Middle Triassic	limestone	limestone
Roghay			Paktia	33-12-55N	69-32-45E	Asb		Occurrence	; Eocene	ultrabasic plug; siltstone	asbestos
Rokul			Bamian	34-42-10N	68-08-05E	Ва	vein	Occurrence	Early Carboniferous	schist	barite
Rosana			Paktia	33-12-25N	69-36-35E	Asb	serpentine-hosted asbestos			serpentinized peridotite	asbestos
Roshgh			Takhar	36-35-25N	69-40-52E	COA	sedimentary	Occurrence	Late Jurassic		coal
Rugh			Ghowr	34-16N	64-24E	Hal	lacustrine evaporite	Active Small producer (1977)	Pliocene	clay, argillaceous marl, sandstone	halite
Ruhabad Oirishek, Qala Bist Saline Belt*			Kandahar- Helmand	0.10.0	01212	Bri Hal	ovaporito	producer (1777)	- Nessine	Sundstone	brine, salt
Rukhabad			Kandahar	31-24-40N	65-42-00E	Bri Hal	lacustrine brine	Active producer (1977), D	Recent		halite, thenardite, anhydrite
Rul-i-Khumry			Baghlan	35-28-24N	68-40-56E	Lst	sedimentary	(1777), 0	Late Cretaceous	limestone	limestone
Rustak area*			Takhar	37-07N	69-44E	Au					
Sabz			Badakhshan	36-08-10N	70-33-00E	Lst	sedimentary	Active producer? (1977)	Early Carboniferous	limestone	limestone, marl

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
		In silicified and weakly greisenized shear zones	Aladollah arad athana 1077		
		are silica-bearing areas with minor W	Abdullah and others, 1977;		
Qarya-i-Saraw		mineralization.	Bowersox and Chamberlin, 1995	32.917	66.950
		5 mineralized areas in brecciated host rocks.	Abdullah and others, 1977;		
Qasem		Ancient workings present.	Bowersox and Chamberlin, 1995	33.418	64.621
D-b-4-1,*		Although reported in Kunduz province, latitude-	B	27 122	(0.550
Rabatak area*		longitude is in Baghlan Province.	Bowersox and Chamberlin, 1995	36.133	68.550
D 1		Limonitic mineralized layers and lenses 700 m	Abdullah and others, 1977;	0.4.400	(0.047
Rabat-i-Sapcha		long and 40-60 m thick.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	34.108	62.317
D-b-+: Cb-		C		24.002	(0.017
Rabot-i-Sapcha		Small gypsum lenses.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	34.083	62.317
		Defendance of the ball of the			
D-f-I.		Refractory clay suitable for brick. Clay bed is 5		25 520	(7.050
Rafak		m thick.	Chamberlin, 1995	35.530	67.853
		Altered rocks 300-400 m long and up to 10 m	D 101 1 1 1005	04440	45.000
Rangin*		thick contain disseminations of galena.	Bowersox and Chamberlin, 1995	34.148	65.922
D			Abdullah and others, 1977;	20.400	70 5 4 4
Rawanak		Linearitie male in the character is a second of the character is a second	Bowersox and Chamberlin, 1995	38.192	70.544
_		Limonitic rocks in shear zone are mineralized	Abdullah and others, 1977;		
Razer		with siderite veins.	Bowersox and Chamberlin, 1995	35.983	70.733
		Quartz vein 400 m long and 0.6-2.3 m thick	Abdullah and others, 1977;		
Rishaw	up to 5 g/t Au	with Au mineralization.	Bowersox and Chamberlin, 1995	37.503	70.635
			Abdullah and others, 1977; Kazmi		
			and Snee, 1989; Bowersox and		
Riwat		In Panjsher Valley.	Chamberlin, 1995	35.467	69.875
Rjan		Mineralized shear zone 1200 m long and 5-10	Abdullah and others, 1977;		
		m thick.	Bowersox and Chamberlin, 1995	34.277	69.460
		About 20 pegmatite dikes 15-400 m long and			
		1-4 m thick. Bowersox and Chamberlin list	Abdullah and others, 1977;		
Road-Side	20-30% spodumene	site as "Unnamed".	Bowersox and Chamberlin, 1995	36.667	71.667
			Abdullah and others, 1977;		
		Iceland spar crystals in 2 x 3 m cavity in shear	ESCAP, 1995; Bowersox and		
Robaty-Payin		zone.	Chamberlin, 1995	37.924	71.579
		Mineralized zone 10-20 m thick in ferruginous	Abdullah and others, 1977;		
Rode-Duzd		andesite.	Bowersox and Chamberlin, 1995	32.733	63.050
			Abdullah and others, 1977;		
Rod-i-Karuh		3 Fe-rich lenses at contact of tuff and slate.	Bowersox and Chamberlin, 1995	34.581	63.139
			Abdullah and others, 1977;		
		Suitable for cement. Black, fine-grained	ESCAP, 1995; Bowersox and		
Rod-i-Sanjur		limestone is up to 400 m thick.	Chamberlin, 1995	34.433	62.733
		Slip-fiber asbestos occurs in a sheared and			
		strongly hydrothermally altered zone up to 400	Abdullah and others, 1977;		
Roghay		m long and 10 m wide.	Bowersox and Chamberlin, 1995	33.215	69.546
		Zone, 350 m long x 70 m wide, with barite vein			
Rokul		and veinlets.	Bowersox and Chamberlin, 1995	34.703	68.135
		Cross-fiber asbestos zone 50 m long and up to	Abdullah and others, 1977;		
Rosana		30 cm thick.	Bowersox and Chamberlin, 1995	33.207	69.610
		3 coal beds, 1.0-2.3 m thick that are high in	Abdullah and others, 1977;		
Roshgh		volatiles.	Bowersox and Chamberlin, 1995	36.590	69.681
	Speculative 360 Mt @		Abdullah and others, 1977;		
Rugh	49% NaCl (1973)		Bowersox and Chamberlin, 1995	34.267	64.400
Ruhabad Oirishek, Qala					
Bist Saline Belt*			Bowersox and Chamberlin, 1995		
			Abdullah and others, 1977;		
Rukhabad			Bowersox and Chamberlin, 1995	31.411	65.700
Rul-i-Khumry		For cement	ESCAP, 1995	35.473	68.682
,		Bowersox and Chamberlin (1995) gave			
		longitude as 59-44E which is not in			
		Afghanistan; believed to be 69-44E which plots			
Rustak area*		in Takhar province.	Bowersox and Chamberlin, 1995	37.117	69.733
			Abdullah and others, 1977;		2111 30
		Found on hillsides as talus, with blocks up to 1			
Sabz	Speculative 500 Mm3	m in diameter over an area of 3 km ² .	Chamberlin, 1995	38.136	70.550
	1-2-200101110 000 191111			30.130	, 0.550

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Sabzak*			Samangan	35-33-42N	67-33-28E	COA					coal
Sabzak-Kotal			Samangan	35-30-54N	67-35-12E	COA	sedimentary	Occurrence	Early to Middle Jurassic		coal
Safed-Koh	Shinwar		Nangarhar	34-12N	70-47E	COA	sedimentary	Occurrence	Neogene	sandstone	lignite
Saheb Khan	SIIIIWai		Badghis	35-08N	62-46E	Pb Zn	sedimentary	Occurrence	Neogene		ingritte
Sahebdad	Sahebad		Oruzgan	33-47-57N	65-05-30E	Hg	shear zone	Occurrence	Early Cretaceous	calcareous sedimentary rocks	cinnabar
Saidy-Kayon			Baghlan	35-37-39N	68-21-20E	Asb		Showing	Early Carboniferous	ultrabasic intrusion	asbestos
Surdy Rayon			Dagman	33 37 371	00 21 202	7.35		Showing	Early carbonic cas	ditrabasic intrasion	
Salang		Panjsher Pegmatite Field	Parvan	35-18-00N	69-16-30E	Ta Nb Sn	pegmatite	Occurrence	Ordovician	schist	tantalite-columbite, spodumene, cassiterite, muscovite, albite, cleavelandite
Salej			Oruzgan	33-51-30N	66-20-30E	w		Occurrence	Proterozoic; Oligocene	; granodiorite	
Samandkay			Paktia	33-10-05N	69-40-46E	Asb		Occurrence	Eocene	ultrabasic	asbestos
Samanghan	Shadian		Samanghan	36-20N	67-55E	S		Occurrence	Eocene	limestone	sulfur
	Samthi; Includes Right Placer, Central Placer,			37-34N to 37-	69-49E to 69-						
Samty	and Slope-Side Placers		Takhar	36N	54E	Au	placer	Active mine, D Past Small producer	Recent	alluvial sediments	native gold
Samykhel			Parwan	34-58N	68-50E	COA	sedimentary	(1977)	Neogene	sandstone	lignite
											barite, calcite, quartz, witherite, galena, chalcopyrite, pyrite,
Sangilyn			Herat	34-45-55N	62-01-40E	Ba	vein	Past producer (1995)	Eocene-Oligocene	volcanics, sediments	malachite
Canaliah			Badakhshan	36-40N	71 215	GRF	codimentary	Oggurrange	Archean	cobiet apoles	graphita
Sanglich			Dauakiisiidii	36-40IN	71-21E	GRF	sedimentary	Occurrence	Archean	schist, gneiss	graphite
Sanglich			Badakhshan	36-20N	71-15E	S	sedimentary, hydrothermal		Archean	marble	sulfur
Sangylyashm			Takhar	36-30-49N	69-36-13E	COA	sedimentary	Occurrence	Late Jurassic		coal
Sardakhana	Sar Dakhana, Sardakna, Sardakana		Farah	33-25N	61-48E	Cu Sn	skarn	Occurrence	Early Cretaceous; Eocene-Oligocene; Miocene	; granite porphyry; diabasic porphyry dikes	malachite, chalcopyrite, Fe
Sar-e-Sang*	Saluakalla		Badakhshan			GEM	SKAITI	Occurrence	Wildcerie	diabasic porpriyry dikes	lapis lazuli
Sar-i-Asia*			Samangan	36-19-37N	68-05-29E	COA		D			coal
Saraj			Parvan	35-09-42N	69-15-00E	Fe	sedimentary	Past producer (1977)	Proterozoic Late Triassic - Early		
Saraw, I, II, III	Saraw		Oruzgan	32-28N	65-49E	F Pb Zn		Occurrence	Jurassic; Middle to Late Jurassic	limestone; sandy limestone	fluorite, calcite, barite, azurite, malachite
Sare Luman			Ghazni	33-08-40N	67-41-00E	Pb Zn		Occurrence	Carboniferous-early Permian	slate	
Sare-Surkh	Sara-Surkh; includes Dar	ye-Ab skarn	Zabol	32-26-18N	66-36-28E	Cu Au	skarn	Occurrence	Late Devonian; Oligocene	limestone; granite	
Sarghul			Ghowr	34-05N	64-46E	Pb Zn		Occurrence	Early-Middle Jurassic;	limestone; sandstone	galena, sphalerite, chalcopyrite, boulangerite

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
		Bowersox and Chamberlin (1995) gave			
		Province as "Herat"; "Samangan" matches			
		latitude-longitude. Location is same as Sarv-			
Sabzak*		Asya coal deposit.	Bowersox and Chamberlin, 1995	25 542	67.558
Sanzak		7 coal beds 1.4-3.0 m thick; suitable for	Abdullah and others, 1977;	35.562	67.556
Sabzak-Kotal		production of thermal power.	Bowersox and Chamberlin, 1995	25 515	67.587
Sabzak-Kulai		Lignite lenses up to 40 cm thick and 1500 m	Abdullah and others, 1977;	35.515	67.367
Safed-Koh		long.	Bowersox and Chamberlin, 1995	34.200	70.783
Saheb Khan		iong.	Bowersox and Chamberlin, 1995	35.133	62.767
Salled Kliali		Dickitized fault zone 160 m long and 10-20 m	Abdullah and others, 1977;	33.133	02.707
Sahebdad		wide with cinnabar disseminations.	Bowersox and Chamberlin, 1995	33.799	65.092
Janebuau		wide with chinabar disserninations.	Abdullah and others, 1977;	33.177	03.072
Saidy-Kayon			Bowersox and Chamberlin, 1995	35.628	68.356
Saluy-Rayon			ESCAP, 1995; Bogatskiy and	33.020	00.550
	23 pegmatite dikes 10-		others, 1978; Abdullah and others,		
		Pegmatite dikes 10-300 m long and 0.5-18 m	1977: Bowersox and Chamberlin.		
Salang	m thick.	thick.	1995	35.300	69.275
ou.uy	unok.	Mineralized ferruginous shear zone over 400 m		33.300	07.273
Salej		long and 1-2 m thick.	Bowersox and Chamberlin, 1995	33.858	66.342
		Cross-fiber asbestos in numerous small zones	Abdullah and others, 1977;	33.030	55.542
Samandkay		and veinlets.	Bowersox and Chamberlin, 1995	33.168	69.679
Surriariakay		Native sulfur occurs in limestone 200 m from a		33.100	07.077
Samanghan		hydrogen sulfide spring.	Bowersox and Chamberlin, 1995	36.333	67.917
Surriarighan		Deposit is 8000 m long and 900-1700 m wide	Bowersox and Chamberini, 1775	30.333	07.717
		with an average 27.9 m groove small depth.			
		Placer composed of 2 beds. Spotty pay streak.	ESCAP 1995: Abdullah and		
		Au has high fineness, but overburden (20 m)	others, 1977; Kuo, 1992;	37.567 to	69.817 to
Samty	g/m³	may limit potential.	Bowersox and Chamberlin, 1995	37.600	69.900
Sunity		2 lignite beds and several lenses. The lower	Abdullah and others, 1977;	37.000	07.700
Samykhel		bed was mined by hand.	Bowersox and Chamberlin, 1995	34.967	68.833
Surrykrici		bed was mined by hand.	Abdullah and others, 1977;	34.707	00.000
	Total reserves: 1.756		Chmyriov and others, 1973;		
	Mt ore @ 85% BaSO,		ESCAP, 1995; Jankovic, 1984;		
Sangilyn	(1976)	30 veins of barite in 3 sq km area.	Bowersox and Chamberlin, 1995	34.765	62.028
ourigny	(1776)	co voiris or surve in o squarrarea.	Abdullah and others, 1977;	01.700	02.020
	Speculative 5000 t		ESCAP, 1995; Bowersox and		
Sanglich	graphite	Graphite lens is 50 m long and over 5 m thick.	Chamberlin, 1995	36.667	71.350
cangnon	grapriite	erapinte tens is se in teng and ever s in timek.	ESCAP, 1995; Abdullah and	00.007	71.000
	0.250 Mt sulfur; up to		others, 1977; Bowersox and		
Sanglich	80% S	S-bearing marble beds.	Chamberlin, 1995	36.333	71.250
			Abdullah and others, 1977;		
Sangylyashm		2 coal seams, each up to 23 cm thick.	Bowersox and Chamberlin, 1995	36.514	69.604
31 J		.,	, , , , , , , , , , , , , , , , , , , ,		
			Abdullah and others, 1977;		
Sardakhana		Skarns up to 200 m long and 0.5-11 m thick.	Bowersox and Chamberlin, 1995	33.417	61.800
Sar-e-Sang*			Bowersox and Chamberlin, 1995		
Sar-i-Asia*			Bowersox and Chamberlin, 1995	36.327	68.091
			Abdullah and others, 1977;		
		Large hematite lenses 10-30 m thick. Deposit	ESCAP, 1995; Bowersox and		
Saraj	Speculative 7.2 Mt	was worked in ancient times.	Chamberlin, 1995	35.162	69.250
•		***			
			Abdullah and others, 1977;		
Saraw, I, II, III			Bowersox and Chamberlin, 1995	32.467	65.817
		Lead-zinc mineralization in silicified zones and			
		quartz veins in 2 areas in silicified brecciated	Abdullah and others, 1977;		
Sare Luman		rocks.	Bowersox and Chamberlin, 1995	33.144	67.683
—————			Abdullah and others, 1977;		21.500
Sare-Surkh		Mineralized skarns at contact.	Bowersox and Chamberlin, 1995	32.438	66.608
		Mineralized sandstone lenses in shear zone in	Abdullah and others, 1977;	52. 130	55.500
Sarghul		limestone.	Bowersox and Chamberlin, 1995	34.083	64.767
ou. g. iui	0.01-0.79% Sn, 0.07-	Veinlets in brecciated, slightly silicified shear	Abdullah and others, 1977;	54.005	54.707
1	0.50% Cu	zones 500 m long by 100 m wide.	Bowersox and Chamberlin, 1995	33.158	61.750

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
у	g					, , , , , , , , , , , , , , , , , , , ,	- Jpc at a special				- 5
Sarobi			Laghman	34-29-30N	69-56-30E	Mica	pegmatite		Proterozoic;	metamorphic rocks; granite plugs	muscovite, apatite, tourmaline
Sarobi*						GEM					ruby
		Darrah-i-Suf coal									
Sary-Asya	Sar-i-Asia	district	Samangan	35-33-42N	67-33-28E	COA	sedimentary	Occurrence, D	Early to Middle Jurassic		
Sary-Assya			Samangan	35-30-32N	67-36-08E	Gyp		Occurrence	Late Cretaceous - Paleocene		gypsum
Sary-Assya I			Samangan	35-31-32N	67-30-02E	Gyp		Occurrence	Late Cretaceous - Paleocene	sediments	gypsum
Sary-kan			Takhar	36-34-47N	69-39-14E	Gyp		Occurrence	Late Jurassic	argillite	gypsum, clay
								Intermittent		carbonaceous marble, gneiss, schist; alaskite	lapis lazuli, graphite, molybdeniti magnetite, hematite, galena,
Sary-Sang			Budakhshan	36-10N	70-49E	GEM	skarn	producer	Archean;	granite, basic dikes	barite
Sary-Tor			Samangan	35-38-23N	67-21-20E	COA	sedimentary	Occurrence	Early to Middle Jurassic		coal
Sausang			Bamian	34-45-08N	68-15-45E	Fe		Occurrence	Proterozoic	schist	hematite, magnetite
Saydan			Zabol	32-42-06N	66-52-18E	Cu	shear zone	Occurrence	Oligocene	granitic rocks	
Saydo			Ghazni	33-14-00N	67-15-40E	Cu		Occurrence	Late Cretaceous- Paleocene; Early-Middle Devonian	intrusions, granite porphyry dikes; sandstone	magnetite, chalcopyrite
Sayed II, III	Sayed II		Takhar	36-30-00N	69-40-12E	COA	sedimentary	Occurrence	Early to Middle Jurassic		coal
Sayed-I			Takhar	36-30-32N	69-33-32E	COA		Occurrence	Early to Middle Jurassic	clay	coal
Sebak			Ghowr	33-30-03N	64-40-30E	Hg	shear zone	Small past producer		; porphyry dikes	
Seh-Koh	Sekoh		Faryab	35-17N	65-22E	Cu Fe	hydrothermal?	Occurrence	Miocene; Late Cretaceous	granodiorite porphyry; sedimentary rocks	hematite, magnetite, chalcopyrite chalcocite
Seh-Kuta	She Kuta		Farah	33-05N	61-42E	Sn Pb Zn	veins	Occurrence	Oligocene	granite	cassiterite, galena
Sewak			Bamian	34-14-15N	66-52-33E	Hg	shear zone	Showing	Late Jurassic-Early Cretaceous; Recent	limestone; unconsolidated rocks	cinnabar
		Darrah-i-Suf coal									
Shabashak	Sabashak	district	Bamian	35-41-36N	67-27-00E	COA	sedimentary	Occurrence, D	Early to Middle Jurassic		coal
Shabashak			Bamian	34-41-36N	67-27-00E	Cly	sedimentary		Early-Middle Jurassic	clay	clay
								Active producer			
Shabnam			Ghazni	32-56-45N	67-49-15E	SDG		(1977)	Quaternary?	alluvium	sand and gravel spodumene, microcline, albite,
Shahidan			Laghman	34-29-54N	63-56-04E	Li Be	pegmatite	Occurrence	Proterozoic	schist, gneiss	beryl, columbite-tantalite; minor cassiterite
Shahkabul			Vardak	34-19-10N	69-49-15E	GRF		Occurrence	Proterozoic	marble	graphite
					_		sedimentary/volca		Late Jurassic to Early	volcanics intruded by	Cu-pyrite, pyrrhotite, sphalerite, limonite, hematite, chalcopyrite,
Shaida			Herat	33-51N	61-51E	Cu Zn	nic nic	Occurrence, D	Cretaceous	Oligocene granite quartz porphyry, quartz	gold
Ch-i-l- I			Hanne	22 52N	(1.505	C. Dh. 7-		0	Late Jurassic - Early	keratophyre; granite	
Shaida I			Herat	33-52N	61-50E	Cu Pb Zn		Occurrence	Cretaceous; Oligocene Late Jurassic - Early	porphyry	malachite, azurite, chalcopyrite
Shaida II			Herat	33-50-50N	61-49-00E	Cu Pb Zn		Occurrence	Cretaceous	quartz porphyry	

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
	Indicated + Inferred				
	1.704 t mica (1974, for	Pegmatite dikes 20-150 m long and 0.1-50.0	ESCAP, 1995; Abdullah and		
Sarobi	21 dikes)	m thick.	others, 1977	34.492	69.942
Sarobi*	21 dikes)	III tilick.	Bowersox and Chamberlin, 1995	34.472	07.742
Jarobi	Indicated + Inferred:		ESCAP, 1995; Abdullah and		
	5.8 Mt @ 9.5-27.0%	14 coal beds; 3 may be worked economically	others, 1977; Afzali, 1981;		
Sary-Asya	ash; 7339-7921 Kcal	and are 0.40-4.56 m thick.	Bowersox and Chamberlin, 1995	35.562	67.558
Jai y-Asya	asii, 7557-772 i Reai	Gypsum "interlayers" and lenses up to 15 m	Abdullah and others, 1977;	33.302	07.550
Sary-Assya		thick.	Bowersox and Chamberlin, 1995	35.509	67.602
Jai y-Assya		trick.	Abdullah and others, 1977;	33.307	07.002
Sary-Assya I		Gypsum beds 2-10 m thick.	Bowersox and Chamberlin, 1995	35.526	67.501
Jai y-Assya i		Impure gypsum beds up to several meters	Abdullah and others, 1977;	33.320	07.301
Sary-kan		thick.	Bowersox and Chamberlin, 1995	36.580	69.654
Sai y-Kai i		ulick.	Abdullah and others, 1977, p.	30.360	07.034
1		9 lapis zones up to 300 m long and 8 m thick.	282; ESCAP, 1995; Bowersox and		
1	Total reserves (1977):	Lapis lenses usually less than 100 kg; those	Chamberlin, 1995; Wyart and		
6				2/1/7	70.017
Sary-Sang	1500 t lapis	less than 10 kg homogenous.	others, 1981	36.167	70.817
		2 composite coal beds (0.97 and 1.08 m thick)			
Sary-Tor		are closely spaced.	Bowersox and Chamberlin, 1995	35.640	67.356
_			Abdullah and others, 1977;		
Sausang		Fe-enriched lens is 350 m long and 15 m thick.	Bowersox and Chamberlin, 1995	34.752	68.263
		Silicified shear zone is mineralized, 400 m	Abdullah and others, 1977;		
Saydan		long, and 15 m thick.	Bowersox and Chamberlin, 1995	32.702	66.872
-		-			
		5 mineralized hydrothermally-altered zones	Abdullah and others, 1977;		
Saydo		occur at exocontact.	Bowersox and Chamberlin, 1995	33.233	67.261
			Abdullah and others, 1977;		
Sayed II, III		Coal seam 15 cm thick.	Bowersox and Chamberlin, 1995	36.500	69.670
			Abdullah and others, 1977;		
Sayed-I		Coal seam 15 cm thick.	Bowersox and Chamberlin, 1995	36.509	69.559
Sayear		Altered fault zone contains cinnabar	Abdullah and others, 1977;	30.307	07.337
Sebak		disseminations and veinlets.	Bowersox and Chamberlin, 1995	33.501	64.675
Schak		Several tabular mineralized bodies occur in	Abdullah and others, 1977;	33.301	04.073
Seh-Koh		altered granodiorite.	Bowersox and Chamberlin, 1995	35.283	65.367
Sell-Kull		Mineralized quartz veins in brecciated zone	Abdullah and others, 1977;	33.203	03.307
Sola Kuta		that is 6500 m long.	Bowersox and Chamberlin, 1995	22.002	41 700
Seh-Kuta				33.083	61.700
6 1		Hg mineralization in shear zone and	Abdullah and others, 1977;	0.4.000	// 07/
Sewak	Measured + Indicated:	unconsolidated rocks.	Bowersox and Chamberlin, 1995	34.238	66.876
1					
1	54 Mt @ 7620-8258				
	Kcal and 3.27-31.7%		ESCAP, 1995; Abdullah and		
	ash (11.57 Mt of which	12 coal beds of 0.80-3.15 m thick. The 5	others, 1977; Afzali, 1981;		
Shabashak	is coking coal)	lower beds are suitable for coking coal.	Bowersox and Chamberlin, 1995	34.693	67.450
			Abdullah and others, 1977;		
		Suitable for drilling mud or as molding clay.	ESCAP, 1995; Bowersox and		
Shabashak		Has high alkaline content.	Chamberlin, 1995	34.693	67.450
		A 2-5 m thick pebble bed in a 5 km ² area of			
		alluvium and alluvial fans of the Tarnak Valley.	Abdullah and others, 1977;		
Shabnam		Used for road construction.	Bowersox and Chamberlin, 1995	32.946	67.821
Shabham		Osca for roda construction.	Bogatskiy and others, 1978;	32.740	07.021
			Abdullah and others, 1977;	1	
Shahidan			Bowersox and Chamberlin, 1995	34.498	63.934
Juaniuan		Graphite-bearing zone up to 600 m long and	Abdullah and others, 1977;	34.490	03.934
Chahkahul	2 99/ graphita	250 m wide.		24 210	40.001
Shahkabul	3-8% graphite	250 m wide.	Bowersox and Chamberlin, 1995	34.319	69.821
	Information A CAM CO 4 101	A continuo Bond bondino notici (100 100 100 100 100 100 100 100 100 10	Abdullah and others, 1977;	1	
		6 mineralized bodies coincide with a fault zone			
Shaida	Cu, 1.2% Zn	and are 150-850 m long, 2.4-8.2 m thick.	Chamberlin, 1995	33.850	61.850
I					
		Silicified and limonitized zones contain	Abdullah and others, 1977;	1	
Shaida I	mineralization. Bowersox and Chamberli Foliated zone contains mineralized gossan that Abdullah and others, 197		Bowersox and Chamberlin, 1995	33.867	61.833
-					
Shaida II		is 200 m long and up to 12 m wide.	Bowersox and Chamberlin, 1995	33.847	61.817

						1					
Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
									Early Cretaceous; Late		
Ch-:-I- III	Chauda III			22 F1 10N	(1.40.005	C. Dh. 7-		0	Jurassic-Early	-1-4	ala da a considera de considera
Shaida III Shakar-Dara*	Shayda III		Herat Parvan	33-51-10N 34-43N	61-49-00E 68-46E	Cu Pb Zn Fe		Occurrence	Cretaceous	slate; quartz porphyry	chalcopyrite, azurite
Shakar-Dara			Faivaii	34-4314	00-40L	16		Active Small			
Shakhmaxud	Sharhmaxud		Kandahar	31-40-00N	65-25-00E	Serp		producer (1977)			serpentine
Ch-lib-i				24.07.05N	(0.04.155	A - I-	serpentine-hosted	0	F		-1
Shakhsi			Lowgar	34-07-05N	69-04-15E	Asb	asbestos	Occurrence	Eocene	peridotite	chrysotile
Shakhzadah I			Ghazni	33-27-48N	68-10-40E	W	veins	Occurrence	Oligocene; Proterozoic	granite; hornfels	scheelite
Shamakat	Shamakar	Shamakat Field	Laghman	34-40-10N to 34-44-00N	70-00-20E to 70-02-15E	Li Cs Rb Sn Ta Nb Be	pegmatite	Occurrence, D	Proterozoic; Oligocene	metamorphic rocks; granitic plug	spodumene, petalite, albite, cassiterite, columbite-tantalite
Shamal			Paktia	33-18-55N	69-37-00E	Qtz		Occurrence	Paleocene	siltstone	quartz, rock crystal
Ondina			Tuktiu	00 10 001	0,0,00	G.E		00041101100	Oligocene; Early	Sittotono	magnetite, chalcopyrite, bornite,
Shand			Farah	33-00-30N	69-51-00E	Sn Bi	skarn	Occurrence	Cretaceous	granite; limestone	galena, pyrite, arsenopyrite
Shanhi-Baranty	Shanai-Baranty		Kabol	34-25-30N	69-14-00E	Mbl	metasedimentary	Small intermittent producer (1977)	Proterozoic	marble	marble
Snarini-baranty	Shahar-baranty		Kabui	34-23-3011	07-14-00L	IVIDI	metaseumentary	Intermittent	1 Toter ozoic	marble, amphibolite,	marbie
Sharar			Kabol	34-30N	69-10E	Mbl	metasedimentary	producer (1977)	Proterozoic	gneiss	marble
Charlet				24.44N	69-13E	r-	-1	0	Destauration		
Shaykhu Shebanghan			Kabol Jawzjan	34-46N 36-41N	66-09E	Fe Natural Gas	skarn	Occurrence	Proterozoic	marble	magnetite Natural Gas
Silebanghan			Sawzjan	30 4114	00 072	IVatarar Gas					ivatarar ous
Sheenkay	Sheenky		Kabol	34-19-50N	69-15-00E	Fe	skarn	Occurrence	Proterozoic;	marble; diabase-gabbro	
Sheghnan*			Badakhshan	37-21N	71-29E	Si				alatu arangagaya	silica sand, sandstone
Shekhlawast			Ghowr	34-15-32N	64-37-00E	Pb Zn	shear zone	Occurrence	Triassic	slaty-arenaceous sediments	
Sheng			Oruzgan	33-45N	66-40E	Sn	veins	Occurrence	Oligocene	granite	chalcopyrite, arsenopyrite, malachite, azurite, galena, pyrite, cassiterite, scheelite
			, , , , , , , , , , , , , , , , , , ,	37-30-20N to	70-16-00E to					volcanics, limestone,	
Shenghan			Badakhshan	37-38-00N	70-21-15E	Au	veins	Occurrence	Early Carboniferous	gabbro-diabase	gold
Shenivaghur			Baghlan	35-43-47N	68-33-00E	Dol		Active producer? (1977)	Late Cretaceous - Paleocene	dolomite	dolomite
Sileriivagilui			Dagillari	33-43-4711	00-33-00L	Doi		(1777)	1 dieocene	dolornite	dolornite
Shere-Arman			Badghis	34-37N	63-52E	COA	sedimentary	Occurrence	Middle to late Triassic		coal
Shewa			Badakhshan	38-00N	71-16E	SDG			Quaternary?	alluvium	sand and gravel
Onowa	Shin-gar; includes Main,		Badakiishan	55 551	7.102	050			Quatornary.	anaviani	Sana ana graver
	Eastern and Northern										chalcopyrite, sphalerite, galena,
Shin-Ghar	zones		Kandahar	32-14-09N	65-43-03E	Sn Cu	skarn	Occurrence	Late Triassic; Oligocene	limestone; granite	pyrite, magnetite
Shinwar			Kabol	34-19N	69-37E	Cu	shear zone	Occurrence	Eocene	serpentinite	malachite
Ch			Paktia	33-14N	69-35E	Asb	serpentine-hosted asbestos	0	F	ultrabasic rock,	-1
Shodal			Paktia	33-14N	69-35E	ASD	aspestos	Occurrence	Eocene	serpentinite	chrysotile
Shodal			Paktia	33-14N	69-36E	Cr		Occurrence	Eocene	peridotite	chromite
Shodal*			Lowgar	0 (00)	74.405	Olivine					olivine
Shoka*			Badakhshan	36-22N	71-13E	GEM			Late Triassic; Middle-		lapis lazuli
Shoshon	Shashan		Baghlan	35-51N	69-23E	Cu Pb Zn		Occurrence	Late Triassic, Middle	granite; volcanics	pyrite
								Active producer		sandstone, clay,	
Shuraw			Baghlan	36-03-45N	69-08-56E	Gyp		(1977)	Jurassic	gritstone	gypsum
Siab	Sy-Ab		Farah	32-39N	62-53E	Cu Pb Zn	vein	Occurrence	Early Cretaceous	volcanoclastic sediments	Cu sulfides, galena
6: 1/ 1				05.00.000	(4.00.55=						malachite, azurite, cuprite,
Sim-Koh			Herat	35-20-25N	61-20-00E	Cu		Past Small producer	Cretaceous Late Cretaceous -	sediments	chalcopyrite
		1	1	1	1	1	1	1	Fare Oreraceons -	1	i e

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
		Gossan at contact of slate and porphyry	Abdullah and others, 1977;		
Shaida III		contains disseminated mineralization.	Bowersox and Chamberlin, 1995	33.853	61.817
Shakar-Dara*		contains disserminated minoralization.	Bowersox and Chamberlin, 1995	34.717	68.767
			Abdullah and others, 1977;		
Shakhmaxud			Bowersox and Chamberlin, 1995	31.667	65.417
		Strongly serpentinized areas contain asbestos-	Abdullah and others, 1977;		
Shakhsi		bearing zones up to 200 m long.	Bowersox and Chamberlin, 1995	34.118	69.071
61 11 111		Quartz veins and veinlets occur in an area	Abdullah and others, 1977;	00.440	(0.470
Shakhzadah I		1000 m by 65-200 m in granite and hornfels.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977, p.	33.463	68.178
		2 pegmatite dikes hundreds to 2000 m long	222; ESCAP, 1995; Bowersox and	34.669 to	70.005 to
Shamakat		and 1-10 m wide.	Chamberlin, 1995	34.733	70.00310
Silailiakat		and 1-10 m wide.	Abdullah and others, 1977;	34.733	70.037
Shamal		Silicified zones and quartz veins.	Bowersox and Chamberlin, 1995	33.315	69.617
		Skarns in limestone roof pendant are 15-20 m	Abdullah and others, 1977;		
Shand		long and 3-4 m wide.	Bowersox and Chamberlin, 1995	33.008	69.850
			Abdullah and others, 1977;		
Shanhi-Baranty			Bowersox and Chamberlin, 1995	34.425	69.233
			Abdullah and others, 1977;		
Sharar		White homogeneous marble is 20 m thick.	Bowersox and Chamberlin, 1995	34.500	69.167
Chandahaa		Magnetite lenses are 10-20 m long and 0.2-1.0		247/7	(0.017
Shaykhu		m thick.	Bowersox and Chamberlin, 1995 Bowersox and Chamberlin, 1995	34.767	69.217
Shebanghan		Skarn zone with magnetite lenses that are 5-10		36.683	66.150
Sheenkay		m long and 0.5-1.0 m thick.	Bowersox and Chamberlin, 1995	34.331	69.250
Sheghnan*		in long and 0.5 1.6 in thick.	Bowersox and Chamberlin, 1995	37.350	71.483
onogranan			Abdullah and others, 1977;	07.000	711100
Shekhlawast		Mineralized silicified shear zone.	Bowersox and Chamberlin, 1995	34.259	64.617
			Abdullah and others, 1977;		
Sheng		300 mineralized veins and silicified zones. Mineralized quartz veins and veinlets intrude	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	33.750	66.667
Shenghan		all rock types.	Bowersox and Chamberlin, 1995	37.506 to 37.633	70.267 to 70.354
Silengilan		Bed of massive black dolomite about 1000 m	Abdullah and others, 1977;	37.033	70.334
Shenivaghur		long and 80 m thick.	Bowersox and Chamberlin, 1995	35.730	68.550
Sheriivaghai		Coal lenses 15-20 cm thick and up to 10 m	Abdullah and others, 1977;	33.730	00.550
Shere-Arman		long.	Bowersox and Chamberlin, 1995	34.617	63.867
	Speculative 0.5 Mm ³	3	Abdullah and others, 1977;		
Shewa	(1977)	A 37 m high terrace of the Panj River.	Bowersox and Chamberlin, 1995	38.000	71.267
	,	,			
			Abdullah and others, 1977;		
Shin-Ghar		3 skarn zones.	Bowersox and Chamberlin, 1995	32.236	65.718
		10-15 m long and 1.5 m thick shear zone with	Abdullah and others, 1977;		
Shinwar	Constitution 1 F Mar C	malachite films.	Bowersox and Chamberlin, 1995	34.317	69.617
	Speculative 1.5 Mt @	6 asbestos-bearing veins occur along faults	ESCAP, 1995; Abdullah and		
Chadal		over 19 km² area.	others, 1977; Bowersox and Chamberlin, 1995	22 222	(0.500
Shodal	to 100 m depth)	34 chromite-bearing lenses 3-40 m long and	Abdullah and others, 1977;	33.233	69.583
Shodal		0.2-4.0 m thick.	Bowersox and Chamberlin, 1995	34.233	69.600
Shodal*		o.z. no m tillok.	Bowersox and Chamberlin, 1995	34.233	37.000
Shoka*			Bowersox and Chamberlin, 1995	36.367	71.217
		Mineralized fault along stock's southern	Abdullah and others, 1977;	22.307	
Shoshon		contact.	Bowersox and Chamberlin, 1995	35.850	69.383
			Abdullah and others, 1977;		
Shuraw		1-meter thick gypsum-bearing bed.	Bowersox and Chamberlin, 1995	36.063	69.149
		Fault zone contains quartz veins that are 15-30			
		m long and 1 m thick with disseminated	Abdullah and others, 1977;		
Siab		sulfides.	Bowersox and Chamberlin, 1995	32.650	62.883
Ci K-h		Cu minerals in a 10-80 m thick fault zone. Site		25.040	(1.000
Sim-Koh		mined in past. Limestone is up to 40 m thick and suitable for	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	35.340	61.333
Siwak		cement.	Bowersox and Chamberlin, 1995	35.317	67.895
JIWak	l	Cernent.	Dowersox and Chamberlin, 1995	30.317	07.095

Synonym and Other Names or Spellings	Deposit or District Name	Province	1 -4141-		1	1	1	1	1	1
			Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
		Badakhshan	36-00-30N	70-40-30E	Fe		Occurrence	Oligocene	granite	siderite, limonite
		Bamian	34-15-54N	66-53-00E	Hg		Occurrence	Early Cretaceous	pebble conglomerate	cinnabar, metacinnabar
		Laghman			Mica		D		<u> </u>	muscovite U-aragonite; U-phosphate; U-
		Helmand	30-27-20N	63-34-30E	U Th REE		Occurrence	Early Quaternary; Neogene	carbonatite dikes; sandstone	gypsum, ursilite, U-pyrochlore, monazite, Th-bastnasite
		Nangarhar	34-15N	69-36E	Cr, Asb	sernentine-hosted	Occurrence	Eocene	peridotite	chromite, asbestos
		Paktia	33-08-40N	69-38-35E	Asb	asbestos	Occurrence	Eocene	ultrabasic plug	asbestos
		Kandahar	31-01N	66-24E	Bri Hal		Small intermittent			brine, salt
		Kandahar	31-02N	66-23E	Arag		producer (1977)	Early Cretaceous	calcareous sediments	aragonite
		Kandahar	31-19N	65-56E	Hal Bri?	evaporites and brines(?)	Active producer (1977), D	Recent	lacustrine deposits	halite
		Lowgar	24 11 EON	40 EE 1EE	Ash	serpentine-hosted	Occurrence	Focono	poridatita corportinita	chrysotile
		Lowgai	34-11-3UN	06-55-15E	ASD	aspesios	Occurrence	Eocene	peridotite, serperitirite	Chrysothe
		Paktia	33-08N	69-33E	Pb Zn Ag		Past producer (199	5) Triassic	breccia, sandstone, limestone	sphalerite, galena, pyrite
		Badakhshan	36-22N	71-13E	GEM					lapis lazuli
		Ghazni	32-54-21N	67-41-38E	Au	skarn	Past Small produce	r	conglomerate	
		Helmand	29-43N	63-27E	Arag	sedimentary/volca	Occurrence	Eocene-Oligocene	tuff	aragonite
		Kabal	24 2F 2FN	40.00.105		uoin	Occurrence	Vandian Cambrian	limestane cabiet	chalcopyrite, covellite, malachite
		Raboi				veiii	Occurrence	vendian-cambrian	ilinestone, scriist	chalcopyrite, covenite, maiacrite
		Kabol	34-25-30N	69-08-30E	Mbl	metasedimentary	Occurrence	Proterozoic	marble	marble tantalite-columbite, spodumene,
	Panjsher Pegmatite Field	Parvan	35-09-30N	69-13-30E	Nb Ta Sn	pegmatite	Occurrence	Proterozoic	quartzite, schist	cassiterite, muscovite, albite, cleavelandite
	Surkh-Rod	Laghman	34-52N	70-16E	GEM					beryl
	Pegmatite Field	Nangarhar	34-26-05N	70-15-23E	Cs Rb	pegmatite				
		Parvan	34-51N	68-39E	Cu U Th		Occurrence	Permian	limestone, quartzite	chalcopyrite, malachite, U minerals
		Oruzgan	34-02-30N	66-16-24E	Hg		Occurrence	Early Cretaceous		cinnabar
							Active? Producer			
		Baghlan	35-58-25N	68-40-32E	Cly	sedimentary	(1995)	Neogene	clay	clay
Surkheb		Kandahar	32-20-36N	66-01-08E	Ag Pb Zn Cu Au	veins, hydrothermal	Occurrence	Late Triassic; Late Triassic-Jurassic	limestone; limestone	fluorite, calcite, chalcopyrite, galena, azurite, malachite, chalcocite
		Ghowr	33-28-26N	64-41-15E	Нд		Occurrence	Early Cretaceous	carbonate-clastic sediments	cinnabar
		Nangarhar	34-21N	70-05F	Gvp		Active Small producer (1977)	Neogene	clay, siltstone	gypsum
								Middle Triassic; Late	limestone; andesite	cassiterite, cerussite
	Surkheb	Pegmatite Field Surkh-Rod Pegmatite Field Surkheb	Paktia Kandahar Kandahar Kandahar Lowgar Paktia Badakhshan Ghazni Helmand Kabol Rabol Panjsher Pegmatite Field Parvan Laghman Surkh-Rod Pegmatite Field Nangarhar Parvan Oruzgan Baghlan Surkheb Kandahar Ghowr Nangarhar	Paktia 33-08-40N Kandahar 31-01N Kandahar 31-02N Kandahar 31-19N Lowgar 34-11-50N Paktia 33-08N Badakhshan 36-22N Ghazni 32-54-21N Helmand 29-43N Kabol 34-25-25N Kabol 34-25-30N Panjsher Pegmatite Field Parvan 35-09-30N Laghman 34-52N Surkh-Rod Pegmatite Field Nangarhar 34-26-05N Parvan 34-51N Oruzgan 34-02-30N Baghlan 35-58-25N Surkheb Kandahar 32-20-36N Kandahar 32-20-36N Kandahar 32-20-36N Surkheb Kandahar 32-20-36N Surkheb Kandahar 33-28-26N	Paktia 33-08-40N 69-38-35E Kandahar 31-01N 66-24E Kandahar 31-02N 66-23E Kandahar 31-02N 66-23E Kandahar 31-19N 65-56E Lowgar 34-11-50N 68-55-15E Paktia 33-08N 69-33E Badakhshan 36-22N 71-13E Ghazni 32-54-21N 67-41-38E Helmand 29-43N 63-27E Kabol 34-25-25N 69-08-10E Kabol 34-25-30N 69-08-30E Panjsher Pegmatite Field Parvan 35-09-30N 69-13-30E Surkh-Rod Pegmatite Field Nangarhar 34-26-05N 70-15-23E Parvan 34-51N 68-39E Oruzgan 34-02-30N 66-16-24E Baghlan 35-58-25N 68-40-32E Surkheb Kandahar 32-20-36N 66-01-08E Chowr 33-28-26N 64-41-15E Nangarhar 34-21N 70-05E	Paktia 33-08-40N 69-38-35E Asb Kandahar 31-01N 66-24E Bri Hal	Paktia 33-08-40N 69-38-35E Asb serpentine-hosted asbestos Kandahar 31-01N 66-24E Bri Hal Kandahar 31-02N 66-23E Arag Kandahar 31-19N 65-56E Hal Bri? brines(?) Lowgar 34-11-50N 68-55-15E Asb serpentine-hosted evaporities and brines(?) Paktia 33-08N 69-33E Pb Zn Ag serpentine-hosted asbestos Badakhshan 36-22N 71-13E GEM sedimentary Kabol 34-25-25N 69-08-10E Cu vein Kabol 34-25-30N 69-0	Pakta 33-08-40N 69-38-35E Asb asbestos occurrence	Paktia 33-08-40N 69-38-35E Asb asbestos Occurrence Eocene	Pakta 33-08 40N 69-38-35E Asb aspentine-hosted subsets Ecore Ultrabasic plug Small intermittent producer (1977) Early Cretaceous Calcareous sediments Caustrine Caustrine

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
			Abdullah and others, 1977;		
Skazar		Siderite and limonite veins in a fault zone.	Bowersox and Chamberlin, 1995	36.008	70.675
Colaboi		Zone, 500 m long and 100 m wide, with disseminated Hg mineralization.	Abdullah and others, 1977	24.245	44 002
Solghoi Sorobi*		disserninated ng milieralization.	Bowersox and Chamberlin, 1995	34.265	66.883
Southern Khanneshin		U mineralization in faults, carbonatite, and radial fractures.	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	30.456	63.575
		10 massive chromite bodies up to 110 m long and 1-10 m thick. There is associated asbestos mineralization in 2 carbonate shear			
		zones. Province is given as Paktia, but latitude			
Sperkaw		longitude is in Nangarhar.	Bowersox and Chamberlin, 1995	34.250	69.600
C		Carac file an	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	22.144	69.643
Sperkhay Spia Baldak*		Cross fiber.	Bowersox and Chamberlin, 1995 Bowersox and Chamberlin, 1995	33.144 31.017	66.400
эріа Ваічак			Abdullah and others, 1977;	31.017	00.400
Spin-Boldak		Worked by hand.	Bowersox and Chamberlin, 1995	31.033	66.383
			Abdullah and others, 1977;		
Spin-Boldak			Bowersox and Chamberlin, 1995	31.317	65.933
			Abdullah and others, 1977;		
Spinkala	0.25-7.88% asb	Veins in serpentinized zone 50-70 m wide.	Bowersox and Chamberlin, 1995	34.197	68.921
	1.12% Pb, 3.28% Zn, 0.01-0.06% Cu, up to	In breccia at sandstone-limestone contact.			
	0.06% Sb, 0.03-0.06%	Mineralized zone is 380 m long, 7-15 m thick,	Abdullah and others, 1977;		
	As, 0.01-0.10% Ni,	40-77 m deep with disseminations, veinlets,	ESCAP, 1995; Afzali, 1981;		
Spira	0.001% Ag	and pockets of sulfides.	Bowersox and Chamberlin, 1995	33.133	69.550
Strambi Valley*	, and the second		Bowersox and Chamberlin, 1995	36.367	71.217
			Abdullah and others, 1977;		
Sufi-Kamedi		Ancient workings at this site. Two aragonite bodies: 1) 50 x 50 m in area	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	32.906	67.694
	Speculative 6300 t	and 0.5 m thick; 2) 15 x 20 m in area and 0.8	ESCAP, 1995; Bowersox and		
Sukalog	aragonite	m thick.	Chamberlin, 1995	29.717	63.450
	J		Abdullah and others, 1977;	34.424	69.136
Sultan Padshah		Mineralized quartz veins.	Bowersox and Chamberlin, 1995	34.424	09.130
Sultan Padshah			Abdullah and others, 1977; Bowersox and Chamberlin, 1995	34.425	69.142
Sultan Faushan			ESCAP, 1995; Abdullah and		
		Pegmatite dikes 10-300 m long and 0.5-18 m	others, 1977; Bowersox and		
Sumte-Shamir	0.2% Sn	thick.	Chamberlin, 1995	35.158	
Sundurar*			Bowersox and Chamberlin, 1995	34.867	70.267
Surk-Rod			ESCAP, 1995	34.435	70.256
ount nou			Abdullah and others, 1977;	01.100	70.200
Surkh-i-Parso		Mineralized area is about 9 km2.	Bowersox and Chamberlin, 1995	34.850	68.650
		Dad analys and single and with 12 blanched			
Surkh-Joi		Red rocks contain a zone with 12 bleached sections that contain disseminated cinnabar.	Abdullah and others, 1977	34.042	66.273
Surkirsoi		sections that contain disserninated chinabar.	Abdullah and others, 1977;	34.042	00.273
		Has been exploited as additive for cement.	ESCAP, 1995; Bowersox and		
Surkhab		Suitable for brick.	Chamberlin, 1995	35.974	68.676
	287-823 g/t Ag, 0.44- 8.23% Pb, 0.63-0.83%		Abdullah and others, 1977;		
	Zn, 0.24-0.26% Cu,	Fluorite-calcite veins 1000 m long and 0.7-0.8	ESCAP, 1995; Bowersox and		
Surkhbed	trace of Au (1971)	m thick with sulfides.	Chamberlin, 1995	32.343	66.019
			Abdullah and others, 1977;		1
Surkhnow		3 mineralized areas in fault zone.	Jankovic, 1984; Bowersox and Chamberlin, 1995	33.474	64.688
Jui NI II IUW		Gypsum bed that is 1500 m long and about 10	Abdullah and others, 1977;	33.474	04.068
Surkh-Rod		m thick.	Bowersox and Chamberlin, 1995	34.350	70.083
		Syaghar is skarnified brecciated shear.	Abdullah and others, 1977;		
Syaghar		Syaghar-I is brecciated limestone.	Bowersox and Chamberlin, 1995	32.939	67.672

	1										
Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Syakh Jar	Syarh-Jar		Badakhshan	37-07-12N	70-52-35E	Fe	skarn?	Occurrence	Oligocene, Late Triassic- Middle Jurassic	Syakh Jar granitic plug, hornfels	hematite, magnetite
Syakh-Darra			Takhar	36-30-03N	69-29-52E	COA	sedimentary	Occurrence	Early to Middle Jurassic		coal
Syry-Dach Tagawli			Kandahar	32-08-28N	65-23-50E	Serp Li	pegmatite	Active Small producer (1977)		skarn	serpentine spodumene
Taghab *			Herat	34-36-11N	62-57-12E	Fe	Faginanta	Occurrence			
Taghab-Soni	Tagabi-Soni		Herat	34-26-30N	63-42-30E	Cu Au Pb Zn	veins	Occurrence	Early Carboniferous	granodiorite, sediments	chalcopyrite, covellite, other
Taghab-Soni-I	Tagabi-Soni-I, Taghab- Sony-I, Taghab-I		Herat	34-26N	63-48E	Cu Pb Zn Sn		Occurrence	Early Carboniferous	granitic rocks	
Taghar*		Jegdalek				GEM		Past producer (1995	5)		ruby
Taghar			Kabol	34-25-53N	69-22-43E	Cu		Occurrence	Vendian-Cambrian	carbonate, phyllite, schist, marble	chalcopyrite, bornite, chalcocite, covellite, malachite, azurite
Taghawlor deposit	Taghaqlor	Taghawlor Pegmatite Field	Oruzgan	33-45-00N	66-25-30E	Li Ta Nb Sn		D	Proterozoic	phyllitic slate	spodumene, microcline, albite, columbite-tantalite, cassiterite
Taghma	Tagma		Parvan	35-11-15N	69-12-30E	Ta Nb Sn		Occurrence	Proterozoic	diorite	albite, spodumene, columbite- tantalite, cassiterite
Taj-Kala Takhta Pul*			Faryab Kandahar	35-54N 31-19N	65-31E 65-57E	Shl Bri Hal	sedimentary	Occurrence	Middle to Late Triassic	carboniferous shale	combustible shales brine, salt
Takita Tai			Kanaanai	31 1714	00 372	Bit tial					billo, suit
Tala-Barfak			Baghlan	35-21-49N	68-10-40E	CLY	Supergene	Active mine (1995)	Late Triassic	clay	clay kaolin
Talah			Oruzgan	34-14-18N	65-55-50E	Pb Zn	shear zone	Small past producer	Early Cretaceous	limestone	
Talbuzanak			Badakhshan	37-13-35N	70-33-21E	Li Be Nb Ta	pegmatite	Occurrence	Proterozoic; Early Triassic	schist; granite	spodumene, microcline, biotite, quartz, cleavelandite; minor beryl, columbite, tantalite, amblygonite, pollucite
Talin Tamaki			Baghlan Ghazni	35-21-00N 33-10-50N	68-07-30E 67-46-30E	Cly Au Pb Zn	sedimentary shear zone	Occurrence Occurrence	Early-Middle Jurassic Ordovician	clay siltstone, sandstone	clay chalcopyrite, galena
Tarraki			GHAZHI	33-10-3014	07-40-30E	Ad 1 b Zii	Shedi Zone	Occurrence	Ordovician	sitistorie, sariustorie	спасорупте, даена
Tambil			Kandahar	32-10-17N	65-35-32E	Fe	skarn	Occurrence	Oligocene; Late Triassic	granite; limestone	hematite, magnetite, limonite
Tambona			Parvan	35-18N	69-27E	Mica	pegmatite	Occurrence	; Proterozoic	ultrabasic plugs; gneiss	muscovite
Tangha						TIc		Occurrence	Proterozoic	greenstone diabase, marble	talc
Tangha			Ghazni	32-47-30N	67-25-30E	Au Cu	shear zone weathering	Occurrence	Silurian	siltstone	
Tanghi			Ghazni	32-45N	67-25E	AI	residual	Occurrence	Permian; Proterozoic	limestone: dolomite	bauxite
Tanghi-Loli			Parvan	34-59N	68-34E	Ba	shear zone,	Occurrence	Early Quaternary		barite
Tanghy-Eshpushta			Bamian	35-21-50N	68-05-46E	Cu	breccia	Occurrence	Late Cretaceous Late Triassic; Late	limestone; diorite	limonite, chrysocolla
Tangi			Ghazni	32-57-08N	67-40-08E	Pb Zn		Occurrence	Cretaceous-Paleocene	porphyry dikes	goethite, limonite

	Donocit Size and (ar)			Docimal	Docimal
Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
			ESCAP, 1995; Abdullah and		
	Speculative: 40-45 Mt	At contact of granite and hornfels. Orebody is	others, 1977; Afzali, 1981;		
Syakh Jar	iron	150 m long, 2.0-3.5 m thick.	Bowersox and Chamberlin, 1995	37.120	70.876
			Abdullah and others, 1977;		
Syakh-Darra		8 coal beds 0.16-0.35 m thick.	Bowersox and Chamberlin, 1995	36.501	69.498
			Abdullah and others, 1977;		
Syry-Dach			Bowersox and Chamberlin, 1995	32.141	65.397
Tagawli Taghab *			Rossovskiy and others, 1976b Bowersox and Chamberlin, 1995	34.603	62.953
ragriab		Over 40 veins 40-1000 m long and 0.4-15 m	Bowersox and Chamberlin, 1993	34.003	02.733
		thick. Eleven of the veins are high in Cu			
		sulfide. Latitude is sometimes given as 34-26-	Abdullah and others, 1977;		
Taghab-Soni		00N.	Bowersox and Chamberlin, 1995	34.442	63.708
		A 3000 m by 900 m zone with quartz-sulfide	Abdullah and others, 1977;		
Taghab-Soni-I		veins and veinlets.	Bowersox and Chamberlin, 1995	34.433	63.800
Tb*		Mine filled in by mujahidin during Soviet	Danis and Chambarlia 1005		
Taghar*		conflict, but good mine before the war.	Bowersox and Chamberlin, 1995		
I		19 discontinuous Cu-bearing zones that are a			
		few hundred to 6000 m long. Mineralization	Abdullah and others, 1977;		
Taghar		occurs as veinlets, pods, and disseminations.	Bowersox and Chamberlin, 1995	34.431	69.379
J			ESCAP, 1995; Abdullah and		
		Dikes up to 2500 m long and 2-20 m thick in a	others, 1977; Bowersox and		
Taghawlor deposit		1.5 by 2 km area.	Chamberlin, 1995	33.751	66.425
		40 pegmatites in an area of 5 km ² are up to	Bowersox and Chamberlin, 1995;		
Taghma		700 m long and 0.5-18.0 m thick.	Abdullah and others, 1977	35.188	69.208
T-: K-I-		Chalair as inlies in a Nanana farmation	Abdullah and others, 1977;	25 000	/F F17
Taj-Kala Takhta Pul*		Shale is an inlier in a Neogene formation.	Bowersox and Chamberlin, 1995 Bowersox and Chamberlin, 1995	35.900 31.317	65.517 65.950
Takilla Fui			Bowersox and Chamberlin, 1995	31.317	03.430
		For porcelain. Kaolin bed is over 1000 m long,	Abdullah and others, 1977;		
	Speculative 0.125 Mt	up to 250 m wide, and about 20 m thick. It	ESCAP, 1995; Bowersox and		
Tala-Barfak	kaolin	lies above a small quartz porphyry intrusive.	Chamberlin, 1995	35.364	68.178
			Abdullah and others, 1977;		
Talah		Shear zone with mineralized veinlets.	Bowersox and Chamberlin, 1995	34.238	65.931
			Abdullah and others, 1977;		
		Lenticular pegmatite vein 200 m long and 20-	Rossovskiy and others, 1976b;		
Talbuzanak		30 m thick.	Bowersox and Chamberlin, 1995	37.226	70.556
raibazariak		oo m amaa	Abdullah and others, 1977;	07.220	70.000
		Refractory clay. Five clay beds 0.5-2.7 m	ESCAP, 1995; Bowersox and		
Talin	Speculative 0.385 Mt	thick.	Chamberlin, 1995	35.350	68.125
		Irregular mineralized silicified areas in fault	Abdullah and others, 1977;		
Tamaki		zone.	Bowersox and Chamberlin, 1995	33.181	67.775
		Mineralization at contact of limestone and	Abdullah and others, 1977;		
Tambil		granite; orebody is 50 m by 40 m by 20 m in size.	Bowersox and Chamberlin, 1995	32.171	65.592
Таппын		Pegmatite dikes 30-100 m long and 2-8 m	Bowersox and Chamberlin, 1995	32.171	03.372
		thick. In 4 of the dikes, the muscovite crystals			
		are up to 15 cm in size and 7 cm thick. In	Abdullah and others, 1977;		
Tambona		1940, 24.5 t of mica were mined.	Bowersox and Chamberlin, 1995	35.300	69.450
Tangha			Chmyriov and others, 1973		
- .	1.3-15.3 g/t Au, 0.40-	Mineralized, silicified shear zone is over 1000	Abdullah and others, 1977;	00.700	(7.405
Tangha	1.57% Cu	m long and 40-45 m wide.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	32.792	67.425
Tanghi		5 bauxite lenses in karst.	Bowersox and Chamberlin, 1995	32.792	67.425
rangill		Six fragmental barite-bearing zones occur in	Abdullah and others, 1977;	32.192	07.425
Tanghi-Loli		brecciated rock over an area of 305 km2.	Bowersox and Chamberlin, 1995	32.750	67.417
, .		Fractures and shear zones with mineralized	Abdullah and others, 1977;	521.50	2
Tanghy-Eshpushta		calcareous breccias.	Bowersox and Chamberlin, 1995	34.983	68.567
		Brecciated limestone lenses at contact of	Abdullah and others, 1977;		
Tangi		diorite and limestone are mineralized	Bowersox and Chamberlin, 1995	35.364	68.096

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Tangi-Murch			Baghlan	36-16-13N	69-12-24E	Sr	bedded	Occurrence?	Paleogene	bituminous limestone, other sediments	celestite
Tanora	Tonura		Farah	35-45N	61-41E	Pb Zn Cu		Occurrence	Early Cretaceous		galena, sphalerite
Taqcha Khana	Namakab, Taloqan		Takhar	36-35-00N	69-37-30E	Hal Gyp	evaporite, salt dome	Active producer (1977), D	Jurassic	evaporites, gypsiferous dome	halite, gypsum
Tashkurghan	Hulm		Samangan	36-50-00N	67-42-30E	Hal	lacustrine brine	Active mine (1995), D	Quaternary	evaporites	halite, anhydrite
Tatang		Surkh-Rod Pegmatite Field	Nangarhar	34-26-05N	70-15-23E	Cs Rb	pegmatite		Silurian-Devonian	schist, limestone	pollucite, tourmaline, cleavelandite, rubellite, lepidolite, cassiterite
Tegher-Maneu			Badakhshan	37-21-28N	74-44-19E	Peat	sedimentary	Occurrence	Quaternary		peat
Tele-Doab			Baghlan	35-38N	69-41E	Cu		Occurrence	Early Triassic; Proterozoic	granodiorite, schist	pyrite, Cu sulfides
Tilak Tirin Rurl*			Ghowr Kandahar	34-14-24N 32-35N	64-06-30E 65-38E	Hg Fe		Occurrence	Oligocene	sandstone, siltstone	cinnabar
Toghma		Panjsher Pegmatite Field		32-3511	03-30E	re					tantalite-columbite, spodumene, cassiterite, muscovite, albite, cleavelandite
Tokana			Vardak	34-26N	68-35E	Mica	pegmatite	Occurrence	Proterozoic	gneiss	muscovite
Topcha-Khana			Takhar	36-35N	69-37E	Cly	sedimentary	Active mine (1995)	Late Jurassic	conglomerate, clay	clay kaolin
Tourmaline	Includes Central, Northern, Southern, and Contact areas		Farah	33-05-45N	61-40-00E	Sn Bi Zn W	vein, breccia	Occurrence	Oligocene; Eocene- Oligocene	granite; acid volcanics	cassiterite, quartz, tourmaline, muscovite, fluorite, pyrite, chalcopyrite, others
Tozaghol			Parvan	35-01N	68-36E	COA	sedimentary	Occurrence	Neogene	clay	lignite
Tozakhol			Paktia	35-00-00N	68-36-00E	COA	sedimentary	Occurrence	Neogene	clay	lignite, clay
Tsamgal (Tsamghal)	Tasmagal	Parun Field - Waigal Zone	Nangarhar	35-17-45N	71-02-31E	Li	pegmatite	Occurrence	Late Triassic	slate	spodumene, microcline, albite
Tsanigal		Pachighram Pegmatite Field	Nangarhar	35-47N	71-12E	Li	pegmatite	Occurrence			spodumene, albite, microcline;
Tsanigal Tsotsum*			Nangarhar Konar	35-43-02N 35-35N	71-07-00E 71-00E	Li GEM	pegmatite	Occurrence	Carboniferous-Early Permian	slate	minor cassiterite, columbite- tantalite, amblygonite, scorzalite tourmaline
Tughra	Tugra		Zabol	32-21-26N	66-34-03E	Au Cu Pb Zn	breccia	Small past production?	Vendian-Cambrian		
Tundara	-3		Baghlan	35-41-25N	68-22-20E	Mo Nb Ta		Occurrence	Late Triassic	"apogranite"	cassiterite, molybdenite
Umar			Kabol	34-17-55N	69-26-10E	Cu	shear zone	Occurrence	Vendian-Cambrian	schist, slate, amphibolite	chalcopyrite, covellite, chalcocite, bornite, chrysocolla
Usdurshar			Parvan	35-03N	68-55E	Hal		Occurrence		travertine	halite
Ustoowa			Ghowr	34-21N	64-34E	Pb Zn		Occurrence	Early Carboniferous		galena

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
	Speculative: 0.0856 Mt		Abdullah and others, 1977;		
Tangi-Murch	SrSO ₄ , ore runs 53.96% SrSO ₄	Four celestite bodies up to 170 m long and 0.4 1.67 m thick.	ESCAP, 1995; Bowersox and Chamberlin, 1995	32.952	67.669
Tanora		2 silica-calcite veins 100-400 m long and 0.3- 1.0 m thick with mineralization.	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	35.750	61.683
		Gypsiferous dome, 1500 m long by 400 m	Abdullah and others, 1977;		
		wide, occurs along a large fault in Upper	Chmyriov and others, 1973;		
Taqcha Khana	77-99% halite	Jurassic rocks.	Bowersox and Chamberlin, 1995	36.583	69.625
			ESCAP, 1995; Abdullah and		
-	00.05.50/ 1	E	others, 1977; Bowersox and	04.000	(7.700
Tashkurghan	89-95.5% halite	Extraction from salt lakes. Pegmatite dike, 170 m long and 3-24 m thick.	Chamberlin, 1995 ESCAP, 1995; Abdullah and	36.833	67.708
	Speculative 66 t Cs	Pollucite forms aggregates and lenses in the	others, 1977; Bowersox and		
Tatang	oxide or 200 t pollucite	dike.	Chamberlin, 1995	34.435	70.256
ratarig	oxide of 200 t polidente	Peat bed, 30-40 cm thick, occurs over an area	Abdullah and others, 1977;	34.433	70.230
Tegher-Maneu		of 3-4 km ² .	Bowersox and Chamberlin, 1995	37.358	74.739
rognor manoa		At exocontact of granodiorite are mineralized	Dewelson and chambering 1776	07.000	,,
		veins and veinlets in zone 600-700 m long and	Abdullah and others, 1977;		
Tele-Doab		180-200 m thick.	Bowersox and Chamberlin, 1995	35.633	69.683
			Abdullah and others, 1977;		
			Jankovic, 1984; Bowersox and		
Tilak		Cinnabar in irregular bleached zones.	Chamberlin, 1995	34.240	64.108
Tirin Rurl*			Bowersox and Chamberlin, 1995	32.583	65.633
		B 17 17 10 000 1 10 5 10			
- .		Pegmatite dikes 10-300 m long and 0.5-18 m	5004D 4005		
Toghma		thick. Pegmatite dikes 200-300 m long and 25-35 m	ESCAP, 1995		
		wide. Muscovite crystals are tabular and			
	Indicated 126.6 t mica	corrugated and up to 30 cm across. In 1971,	Abdullah and others, 1977;		
Tokana	(1977)	48 t of mica were mined.	Bowersox and Chamberlin, 1995	34.433	68.583
	(/		Abdullah and others, 1977;		
	Speculative 3000 m ³	For porcelain. Clay bed is 4-5 m thick and	ESCAP, 1995; Bowersox and		
Topcha-Khana	to 5 m depth (1977)	dark gray to black or brown.	Chamberlin, 1995	36.583	69.617
		Mineralization is in the granite near contact			
	0.04.4.050/.0.004	with volcanics and forms quartz-tourmaline	5004D 4005 AL LUL		
T	0.01-1.35% Sn, 0.01-	veins, veinlets, and silicified tourmaline	ESCAP, 1995; Abdullah and	22.00/	(1 (/ 7
Tourmaline	0.1% Bi	breccias. 4 main areas of mineralization	others, 1977 Abdullah and others, 1977;	33.096	61.667
Tozaghol		Coal bed is 67 cm thick.	Bowersox and Chamberlin, 1995	35.017	68.600
Tozakhol		Lignite is 65 cm thick with 48.6-50.4% ash.	ESCAP, 1995	35.000	68.600
T OZGINIO!	12.5 Mt @ 1.5% Li ₂ 0	Eigritto io do ciri tinok mar 10.0 do: 170 doi:	200711 / 1770	55.555	00.000
	(1977); Speculative		Abdullah and others, 1977, p.		
	0.1875 Mt Li ₂ O @ 1.5%	Spodumene dikes 5000 m long and 10 m	222; ESCAP, 1995; Bowersox and		
Tsamgal (Tsamghal)	Li ₂ O (1974)	wide.	Chamberlin, 1995	35.296	71.042
3 (2 5 7)			ESCAP, 1995; Abdullah and		
Tsanigal		Latitude-long is estimated.	others, 1977	35.783	71.200
Ÿ		-			
		About 50 pegmatite dikes >50 m long and 1-3	Bowersox and Chamberlin, 1995;		
Tsanigal		m thick.	Abdullah and others, 1977	35.717	71.117
Tsotsum*			Bowersox and Chamberlin, 1995	35.583	71.000
		Mineralized and brecciated zones 250 m long	Abdullah and akhan 1077	1	
Tughra		and 5-6 m thick. There are ancient workings in		22.257	44 540
Tughra		this area. Fluorite-mica-quartz greisen zone with	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	32.357	66.568
Tundara		mineralization.	Bowersox and Chamberlin, 1995	35.690	68.372
r urruut a		Fault zone, 500-650 m long and 150-160 m	Abdullah and others, 1977;	33.090	00.372
Umar		thick, with irregular mineralization.	Bowersox and Chamberlin, 1995	34.299	69.436
			Abdullah and others, 1977;		200
Usdurshar			Bowersox and Chamberlin, 1995	35.050	68.917
		Limonitized quartz-carbonate zone, 2 m thick,	Abdullah and others, 1977;		
Ustoowa	1	with mineralized quartz veinlets.	Bowersox and Chamberlin, 1995	34.350	64.567

	_										
Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Utkul			Ghazni	32-55-50N	67-33-40E	Au	shear zone	Occurrence	Late Permian	dolomitized limestone	gold, sulfides
										schist, amphibolite;	
Vekadur			Badakhshan	37-30-50N	70-35-37E	Au Ag	breccia	Occurrence	Proterozoic;	diabase dikes, quartz- keratophyre dikes	native gold, silver, arsenopyrite, galena, chalcopyrite, scheelite
Vicador*			Badakhshan	37-17N	70-23E	Au	bicccia	Occurrence	T TOTCT OZOIC,	keratopriyre dikes	galeria, erialeopyrite, sericente
Vora Desh*			Laghman	34-55N	70-45E	GEM					tourmaline
Waghjan			Lowgar	34-07-50N	69-03-35E	Asb		Occurrence	Eocene	peridotite	asbestos
Waigal	Waygal	Parun Field				Li	pegmatite				spodumene, beryl, albite, schorl
Wakhan			Badakhshan	37-03-30N	73-54-03E	Peat	sedimentary	Occurrence	Quaternary		peat
										ultrabasic rocks, terrigenous-carbonated	
Waraz			Bamian	34-13N	66-53E	Cu		Occurrence	Early Cretaceous	rocks	malachite, azurite
Wardak			Paktia	33-47N	68-31E	Mbl	metasedimentary	Occurrence	Proterozoic	marble	marble
Waris			Badakhshan	38-23-30N	71-07-30E	SDG		2	Quaternary?	alluvium	sand and gravel
Warmankai*		Jegdalek	Dauakiisiiaii	30-23-3014	71-07-30L	GEM		Active mine (1995)	Quaternary:	alluvium	ruby
Warv			Badakhshan	38-01-10N	71-17-00E	SDG			Quaternary?	alluvium	sand and gravel
Werek			Lowgar	34-18-55N	69-04-05E	Cr		Occurrence	Eocene	ultrabasic plug	chromite
West Eshpushta			Baghlan	35-18-05N	68-04-14E	Cly	sedimentary	Occurrence	Early - Middle Jurassic	clay	kaolin
Western Dudkash			Baghlan	36-00-30N	68-45-00E	COA	sedimentary	Occurrence	Early - Middle Jurassic		coal
Western Garmak			Samangan	35-44-00N	67-18-28E	COA	sedimentary	Small Active producer (1977)	Early - Middle Jurassic		coal
Western Sangach	includes: Eastern Sangach		Baghlan	34-59-13N	68-46-30E	COA	sedimentary	Occurrence	Early - Middle Jurassic		coal spodumene, cleavelandite,
Wozgul	Wozghul		Nangarhar	35-29-10N	70-59-10E	Ta Nb Li Cs Rb	pegmatite	Occurrence	Proterozoic	gneiss	microcline, tantalite, pollucite, tourmaline, cassiterite
Yagh-darra			Badakhshan	36-59-15N	71-22-00E	GRF		Occurrence	Archean	gneiss	graphite
Yakhdarra			Kabol	34-25-25N	69-15-00E	Cu		Occurrence	Vendian-Cambrian	quartzite, schist, marble	
Yal-Kumak			Badakhshan	37-23-40N	73-17-05E	Peat	sedimentary	Occurrence	Quaternary		peat
Yarigul						Li	pegmatite				spodumene
Yaryhgul		Parun Field	Nangarhar	35-22-40N	70-50-51E	Li	pegmatite	Occurrence	Oligocene; Proterozoic	granite; gneiss, schist	spodumene, microcline, albite, muscovite, schorl, beryl
Zahghar*		alummeta	Badakhshan	38-23N	70-55E	Au	pegmante	Occurrence	ongocene, i roterozoic	grante, grieiss, scriist	mascovite, scrion, per yr
Zakhel I			Kabol	34-20-05N	69-16-00E	Cu		Occurrence	Vendian-Cambrian	marble	
Zakhel II			Kabol	34-21-20N	69-17-20E	Cu		Occurrence	Vendian-Cambrian	marble	
Zamburak			Kandahar	32-10N	65-30E	Serp		Occurrence		serpentinite	serpentine
Zamburak			Takhar	36-31-25N	69-34-42E	COA		Occurrence	Early to Middle Jurassic		coal
Zamgal						Li	pegmatite				spodumene
Zanda Gharay			Paktia	33-12-30N	69-32-00E	Cu	shear zone	Occurrence	Early Carboniferous; Eocene	slate; conglomerate	Malachite, pyrite, chalcopyrite

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
		Mineralized fault zone 300 m long and 0.5 m	Abdullah and others, 1977;		
Utkul		thick.	Bowersox and Chamberlin, 1995	32.931	67.561
	Indicated + Inferred:		ESCAP, 1995; Abdullah and		
	960 kg Au; 4.1 g/t Au,	Mineralized body is 350 m long, 2 m thick,	others, 1977; Bowersox and		
Vekadur	46.7 g/t Ag	and traceable downdip for 110 m.	Chamberlin, 1995	37.514	70.594
Vicador*			Bowersox and Chamberlin, 1995	37.283	70.383
Vora Desh*		Carac file and a second	Bowersox and Chamberlin, 1995	34.917	70.750
Maghian		Cross-fiber asbestos in bodies up to 80 m long and 0.3-3.0 m thick.	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	34.131	69.060
Waghjan		and 0.3-3.0 m tillex.	Bogatskiy and others, 1978;	34.131	09.000
Waigal			Abdullah and others, 1977		
.va.ga.			Abdullah and others, 1977;		
Wakhan		Peat bed, 30-45 cm thick.	Bowersox and Chamberlin, 1995	37.058	73.901
		Thin malachite and azurite veinlets in	Abdullah and others, 1977;		
Waraz		calcareous lenses.	Bowersox and Chamberlin, 1995	34.217	66.883
		White marble body is 8000 m long and 50 m	Abdullah and others, 1977;		
Wardak		thick.	Bowersox and Chamberlin, 1995	33.783	68.517
	Speculative 60 Mm ³		Abdullah and others, 1977;		
Waris	(1977)	A 65 m high terrace on the Panj River.	Bowersox and Chamberlin, 1995	38.392	71.125
Warmankai*		Largest ruby mine.	Bowersox and Chamberlin, 1995		
141	Speculative 1.5 Mm ³		Abdullah and others, 1977;	00.040	74 000
Warv	(1977)	In a 30 m high terrace of the Panj River. Chromite occurrence is 29 m long and 3 m	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	38.019	71.283
Werek		thick.	Bowersox and Chamberlin, 1995	34.315	69.068
West Eshpushta		Kaolin zone 300 m long and 20 m thick.	Abdullah and others, 1977	35.301	68.071
west Estipustita		Radiii zone 300 iii long and 20 iii tilick.	Abdullari arid others, 1777	33.301	00.071
		11 coal beds, 0.10-1.15 m thick. Coal is semi-	Abdullah and others, 1977:		
Western Dudkash	30.32-50.00% ash	dull and suitable as an energy-producing fuel.	Bowersox and Chamberlin, 1995	36.008	68.750
		10 coal beds 0.5-8.3 m thick and 3500 m long.			
Western Garmak		Worked by hand.	Bowersox and Chamberlin, 1995	35.733	67.308
		16 composite coal seams, 0.10-1.2 m thick.			
		Eastern Sangach area, 500 m eastward, has a	Abdullah and others, 1977;		
Western Sangach		composite coal seam that is up to 1.6 m thick.	Bowersox and Chamberlin, 1995	34.987	68.775
		About 10 pegmatite dikes 100-400 m long and			
Wozgul		1.5-5.9 m thick.	Bowersox and Chamberlin, 1995	35.486	70.986
Vll		Flaky, densely disseminated graphite zone up	Abdullah and others, 1977;	27,000	71 2/7
Yagh-darra		to 250 m long and 10 m thick. Irregular, mineralized marble bed is over 2000	Bowersox and Chamberlin, 1995	36.988	71.367
Yakhdarra		m long and 20-50 m thick.	Bowersox and Chamberlin, 1995	34.424	69.250
Tukiluuliu		Peat bed, 30-40 cm thick, occurs over an area	Abdullah and others, 1977;	34.424	07.230
Yal-Kumak		of 1.5 km2.	Bowersox and Chamberlin, 1995	37.394	73.285
Yarigul			Bogatskiy and others, 1978		
	13 Mt @ 1.0% Li₂O				
	(1977); Speculative		Abdullah and others, 1977, p. 220-		
	0.13 Mt LiO ₂ @ 1.0%	3 by 5 km area with several pegmatite dikes,	221; ESCAP, 1995; Bowersox and		
Yaryhgul	LiO ₂ (1974)	each 0.5-3.5 km long and 1.5-5.0 m thick.	Chamberlin, 1995	35.378	70.848
Zahghar*			Bowersox and Chamberlin, 1995	38.383	70.917
		2 mineralized zones, each about 1000 m long	Abdullah and others, 1977;		
Zakhel I		and 20-100 m thick.	Bowersox and Chamberlin, 1995	34.335	69.267
		2 Cu-bearing zones one is 500 m long by 2-10			
Zakhal II		m thick, the other 1500 m long by 20-35 m	Abdullah and others, 1977;	24.254	/0.000
Zakhel II		thick.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	34.356	69.289
Zamburak			Bowersox and Chamberlin, 1995	32.167	65.500
Lambarak		6 coal seams; 3 may be economic and are	Abdullah and others, 1977;	32.107	05.500
Zamburak		0.69-1.53 m thick. Coal is non-coking.	Bowersox and Chamberlin, 1995	36.524	69.578
Zamgal			Rossovskiy and others, 1976b	22.321	21.370
J.		Mineralized fault zone with hydrothermally	Abdullah and others, 1977;		
Zanda Gharay		altered and brecciated rocks.	Bowersox and Chamberlin, 1995	33.208	69.533

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Zanda Gheray	Zanda-Gheray		Paktia	33-12-10N	69-31-00E	Qtz	veins	Occurrence		amphibolite	quartz, rock crystal
Zanda I			Kandahar	31-57-01N	65-55-00E	Cu Au	shear zone, veins	Small past production	Oligocene; Late Jurassic- Early Cretaceous Proterozoic, Cambrian,	granite; sandstone	chalcopyrite, malachite, azurite
Zandadshon			Herat	34-17-30N	61-53-40E	Ва	vein	Occurrence	Jurassic		barite
Zangerya			Badakhshan	38-20-00N	70-37-30E	SDG		?	Quaternary?	alluvium	sand and gravel
Zanif			Badakhshan	38-18N	71-15E	SDG			Quaternary?	alluvium	sand and gravel
Zanif			Badakhshan	38-18-00N	71-15-31E	Fe		Occurrence	Proterozoic	marble, schist, gneiss	hematite, pyrite, chalcopyrite, galena, sphalerite
Zardak			Ghazni	32-53-40N	67-44-05E	Au	shear zone	Occurrence	Late Jurassic-Early Cretaceous	limestone	pyrite, chalcopyrite, gold
Zardghelak			Bamian	33-57N	67-24E	Pb Zn	skarn	Occurrence	Proterozoic; Oligocene	marble; granite	
Zarkashan			Ghazni	32-53N to 32- 55N	67-41E to 67- 42E	Au Cu	skarn	Occurrence	Middle Triassic; Late Jurassic - Middle Cretaceous; Late Cretaceous-Paleocene	skarn; limestone; carbonated sediments; igneous rocks	chalcopyrite, pyrite, sphalerite, chalcocite, bornite, native gold, garnet, vesuvianite, wollastonite
Zarkashan			Ghazni	32-54-30N	67-44-00E	Au	placer	D	Quaternary	alluvium	gold
Zarmardan			Farah	32-57N	62-44E	Hg	hydrothermal, veins	Occurrence	Paleogene	terrigenous-volcanic rocks	cinnabar
Zawar			Ghowr	34-10N	63-55E	Cu		Occurrence	Early-Middle Jurassic	shale	chalcopyrite, galena, malachite
Zerak			Parvan	34-46-07N	68-16-10E	Ва		Occurrence	Late Devonian	limestone	barite
Zerak			Baghlan	34-46-36N	68-15-12E	Fe	metasedimentary	Occurrence	Early Carboniferous, Proterozoic	greenstone volcanics, silicified dolomite, quartz-sericite slate	hematite, magnetite
Ziadan			Kandahar	32-14-05N	65-44-32E	Sn	,	Occurrence	Late Triassic	limestone	cassiterite, arsenopyrite, rhodochrosite
Ziadan I			Kandahar	32-13-23N	65-43-28E	Sn	shear zone	Occurrence	Late Triassic;	limestone; diabase dike	cassiterite, magnetite, malachite, azurite
Zoldag			Helmand	29-46N	63-52E	Arag	sedimentary, volcanic	Occurrence	Late Quaternary;	subvolcanics; sediments	
Zumrab			Takhar	36-30-13N	69-42-12E	COA		Occurrence	Early to Middle Jurassic	sandstone	coal
Zuri			Parvan	35-06N	69-38E	Mica	pegmatite	Occurrence	Proterozoic;	gneiss; granite plugs	muscovite
SITES & DEPOSITS WITHOUT NAMES											
Unnamed			Badakhshan	36-57-10N	70-44-20E	Asb	veinlets	Showing		ultrabasic rocks	asbestos
Unnamed			Badakhshan	38-13-31N	70-41-33E	Asb	veinlets	Showing	Early Carboniferous	ultrabasic rocks	asbestos
Unnamed			Badakhshan	37-06-55N	70-43-40E	Au		Showing	Proterozoic	schist, migmatite	
Unnamed			Badakhshan	37-08-08N	70-40-45E	Au	skarn	Showing	Proterozoic; Early Triassic	marble; granodiorite	
Unnamed			Badakhshan	37-11-22N	70-42-41E	Au		Showing	Proterozoic	gneiss	

	Deposit Size and (or)			Decimal	Decimal
Locality/Deposit Name	Grade	Comments	References	Latitude	Longitude
			Abdullah and others, 1977;		
Zanda Gheray		Rock crystal 2-4 cm in size.	Bowersox and Chamberlin, 1995	33.203	69.517
Zanda Onoraj		Silicified fault zone at contact of granite and	Botter sex and enamed in 1776	00.200	07.017
		sandstone is up to 30 m thick and contains	Abdullah and others, 1977;		
Zanda I		mineralized quartz veins	Bowersox and Chamberlin, 1995	31.950	65.917
		Lenses and veinlets of barite and calcite along	Abdullah and others, 1977;		
Zandadshon		fault zone.	Bowersox and Chamberlin, 1995	34.292	61.894
	Speculative 15 Mm ³	A 22-35 m high terrace on the Panj River	Abdullah and others, 1977;		
Zangerya	(1977)	consisting largely of pebbles and gravel.	Bowersox and Chamberlin, 1995	38.333	70.625
	Speculative 10 Mm ³		Abdullah and others, 1977;		
Zanif	(1977)	65 m high terrace on the Panj River.	Bowersox and Chamberlin, 1995	38.300	71.250
			Abdullah and others, 1977; Afzali,		
		Hematite lenses occur at contacts and in 2	1981; Bowersox and Chamberlin,		
Zanif		zones, there are calcite-sulfide veinlets.	1995	38.300	71.259
		Small shears and brecciated areas 50-140 m	Ab dullah and athana 1077		
Zardak		long and up to 1 m thick with disseminated mineralization.	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	32.894	67.735
Zaruak		mineralization.	Abdullah and others, 1977;	32.094	07.735
Zardghelak		Skarn lens at contact that is 15 x 10 m in size.	Bowersox and Chamberlin, 1995	33.950	67.400
Zaragriciak		Skarriers at contact that is 15 x 10 m in size.	Bowersox and chamberini, 1775	33.730	07.400
	Indicated + Inferred +		ESCAP, 1995; Abdullah and		
	Speculative: 0.022775	Several ore-bearing zones 400-600 m long and		32.883 to	67.683 to
Zarkashan	Mt @ 0.1-10.16 g/t Au	1-15 m thick.	Chamberlin, 1995	32.917	67.700
	Ŭ		Abdullah and others, 1977;		
Zarkashan		Valley-type place	Bowersox and Chamberlin, 1995	32.908	67.733
		Hydrothermally-altered zones have thin quartz-			
		calcite and calcareous veins with Hg	Abdullah and others, 1977;		
Zarmardan		mineralization.	Bowersox and Chamberlin, 1995	32.950	62.733
_		A zone, 50-10 m by 500 m, contains quartz	Abdullah and others, 1977;		
Zawar		veins with sulfides.	Bowersox and Chamberlin, 1995	34.167	63.917
7		Shear zone, 350 m long x 5-15 m wide, with	Abdullah and others, 1977;	247/0	(0.2/0
Zerak		barite veinlets.	Bowersox and Chamberlin, 1995	34.769	68.269
		In fault zone between Proterozoic greenstone	ESCAP, 1995; Abdullah and		
	Speculative: 20 Mt @	volcanics and Carboniferous rocks. 3	others, 1977; Afzali, 1981;		
Zerak	62.5% Fe	orebodies 90-450 m long and 12-75 m thick.	Bowersox and Chamberlin, 1995	34.777	68.253
Lordit	02.07010	2 mineralized zones, 1 lenticular and 1	Abdullah and others, 1977;	01.777	00.200
Ziadan		pipelike.	Bowersox and Chamberlin, 1995	32.235	65.742
		Mineralized shear zone 220 m long and 10-35	Abdullah and others, 1977;		
Ziadan I		m wide.	Bowersox and Chamberlin, 1995	32.223	65.724
			Abdullah and others, 1977;		
	Speculative 0.58 Mt	Largest aragonite body is 250 m long and 50	ESCAP, 1995; Bowersox and		
Zoldag	aragonite	m wide. Suitable for ornamental use.	Chamberlin, 1995	29.767	63.867
			Abdullah and others, 1977;		
Zumrab		Coal seam is 15 cm thick.	Bowersox and Chamberlin, 1995	36.504	69.703
7!		Managed to a section to the section of the section	Abdullah and others, 1977;	25 100	69.633
Zuri		Muscovite content is relatively low.	Bowersox and Chamberlin, 1995	35.100	09.033
SITES & DEPOSITS					
WITHOUT NAMES					
WITHOUT WAIVIES			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	36.953	70.739
oiairiou			Abdullah and others, 1977;	30.733	70.739
Unnamed			Bowersox and Chamberlin, 1995	38.225	70.693
		<u> </u>	Abdullah and others, 1977;	30.223	70.073
Unnamed			Bowersox and Chamberlin, 1995	37.115	70.728
			Abdullah and others, 1977;	20	20
Unnamed			Bowersox and Chamberlin, 1995	37.136	70.679
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	37.189	70.711

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Unnamed			Badakhshan	37-11-45N	70-40-30E	Au		Showing	Proterozoic	gneiss, amphibolite	galena, arsenopyrite, chalcopyrite, pyrite, gold
Unnamed			Badakhshan	37-15-30N	70-38-10E	Au	veinlets	Showing	Early Triassic	granite	
Unnamed			Badakhshan	37-15-30N	70-42-20E	Au		Showing	Proterozoic	amphibolite	
Unnamed			Badakhshan	37-16-10N	70-42-09E	Au	breccia	Showing	Proterozoic	schist	
Unnamed			Badakhshan	37-34-30N	70-27-30E	Au	breccia	Showing	Proterozoic	gneiss	
Unnamed			Badakhshan	37-35-35N	70-26-30E	Au	vein	Showing	Proterozoic	gneiss	
Unnamed			Badakhshan	37-37-07N	70-29-10E	Au	shear zone	Showing	Early Carboniferous	granodiorite	
Unnamed			Badakhshan	37-42-40N	70-56-40E	Au	skarn	Showing	Proterozoic; Silurian- Devonian	schist; sandstone, marble	
Unnamed			Badakhshan	38-07-40N	71-18-00E	Au	veinlets	Showing	Ordovician	schist	pyrite, gold
Unnamed			Badakhshan	38-13-12N	70-42-24E	Au	shear zone	Showing	Early Carboniferous	volcanics	pyrite, galena, gold
Unnamed			Badakhshan	37-19-20N	71-01-40E	Au Cu	hydrothermal	Showing	Late Triassic-Middle Jurassic	slate	pyrite, pyrrhotite, magnetite
Unnamed			Badakhshan	37-21-05N	71-09-42E	Au Cu		Showing	Late Triassic-Middle Jurassic; Oligocene	slate; granitic rocks	
Unnamed			Badakhshan	36-52-00N	70-41-00E	Cu		Showing	Proterozoic	gneiss	magnetite, malachite
Unnamed			Badakhshan	37-50-30N	71-11-30E	Cu	shear zone	Showing	Eocene-Oligocene	granite porphyry	
Unnamed			Badakhshan	38-07-30N	70-32-00E	Cu	veinlets	Showing	Early Carboniferous	volcanics	malachite, chalcopyrite, covellite
Unnamed			Badakhshan	38-09-10N	71-10-08E	Cu	shear zone	Showing	Early Carboniferous; Early Cretaceous	siltstone, limestone	
Unnamed			Badakhshan	38-10-00N	70-37-00E	Cu	shear zone, veins	Showing	Middle-Late Carboniferous		
Unnamed			Badakhshan	38-11-00N	70-31-30E	Cu	shear zone	Showing	Early Carboniferous		malachite
Unnamed			Badakhshan	38-15-00N	70-44-00E	Cu	shear zone	Showing	Early Carboniferous	volcanics	
Unnamed			Badakhshan	37-30-33N	70-32-42E	F	veinlets	Showing			fluorite
Unnamed			Badakhshan	36-13-00N	71-08-40E	Fe		Showing	Oligocene; Archean	granite;	limonite, hematite
Unnamed			Badakhshan	36-40-25N	70-50-00E	Fe	shear zone	Showing	Early Carboniferous	limestone	magnetite, ankerite
Unnamed			Badakhshan	37-03-00N	70-50-38E	Fe	shear zone	Showing	Early Carboniferous	sandstone, limestone	"bog iron"
Unnamed			Badakhshan	37-08-51N	70-48-05E	Fe		Showing	Late Triassic-Middle Jurassic	limestone	magnetite
Hannand			Dadabbahaa	27 00 1FN	70.40.205	F-	-1	Chaudan	Oligocene; Late Triassic-	granite; limestone,	
Unnamed			Badakhshan	37-09-15N	70-48-30E	Fe _	skarn	Showing	Middle Jurassic Late Triassic; Middle-	sandstone	magnetite, garnet
Unnamed			Badakhshan	37-31-15N	71-02-00E	Fe	shear zone	Showing	Late Paleogene Late Triassic-Middle Jurassic; Middle-Late		magnetite, hematite
Unnamed			Badakhshan	37-33-30N	71-06-00E	Fe	shear zone	Showing	Paleogene Paleogene		magnetite
Unnamed			Badakhshan	36-10-30N	70-49-00E	Мо		Showing	Archean; Oligocene	marble; alaskite	
Unnamed			Badakhshan	36-12-30N	70-46-30E	Pb		Showing	Archean	marble, gneiss	hematite, galena
Unnamed			Badakhshan	37-41-15N	71-14-15E	Qtz COLL		Showing		talus	quartz, rock crystal

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
			Abdullah and others, 1977:		
Unnamed			Bowersox and Chamberlin, 1995	37.196	70.675
oameu			Abdullah and others, 1977;	37.190	70.073
Unnamed		Mineralized veinlets.	Bowersox and Chamberlin, 1995	37.258	70.636
			Abdullah and others, 1977;		
Unnamed		Limonitic, leached zone.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	37.258	70.706
Unnamed		Mineralized breccia zone.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	37.269	70.703
Unnamed		Mineralized breccia zone.	Bowersox and Chamberlin, 1995	37.575	70.458
Official		Initional Education Discourage Control	Abdullah and others, 1977;	07.070	70.100
Unnamed		Mineralized quartz vein.	Bowersox and Chamberlin, 1995	37.593	70.442
			Abdullah and others, 1977;		
Unnamed		Mineralized shear zone.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	37.619	70.486
Unnamed			Bowersox and Chamberlin, 1995	37.711	70.944
Official			Abdullah and others, 1977;	07.771	,0.,
Unnamed		Mineralized quartz-calcite veinlets.	Bowersox and Chamberlin, 1995	38.128	71.300
			Abdullah and others, 1977;		
Unnamed		Mineralized shear zone.	Bowersox and Chamberlin, 1995	38.220	70.707
Unnamed			Abdullah and others, 1977; Bowersox and Chamberlin, 1995	37.322	71.028
Unitamed			Abdullah and others, 1977;	37.322	71.026
Unnamed			Bowersox and Chamberlin, 1995	37.351	71.162
			Abdullah and others, 1977;		
Unnamed		Silicified, garnetiferous talus fragments.	Bowersox and Chamberlin, 1995	36.867	70.683
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	37.842	71.192
Unnamed			Bowersox and Chamberlin, 1995	38.125	70.533
Officialitied			Abdullah and others, 1977;	30.123	70.333
Unnamed		Mineralized fault zone.	Bowersox and Chamberlin, 1995	38.153	71.169
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	38.167	70.617
Unnamed			Abdullah and others, 1977; Bowersox and Chamberlin, 1995	20 102	70 525
Unnamed			Abdullah and others, 1977;	38.183	70.525
Unnamed			Bowersox and Chamberlin, 1995	38.250	70.733
			Abdullah and others, 1977;		
Unnamed		Mineralized quartz-calcite veinlets.	Bowersox and Chamberlin, 1995	37.509	70.545
		Silicified, ferruginous zone along granite	Abdullah and others, 1977;	0/ 047	74.444
Unnamed		contacts.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	36.217	71.144
Unnamed		Mineralized fault zone.	Bowersox and Chamberlin, 1995	36.674	70.833
Omanioa		THIRD GILLOU IGGI.	Abdullah and others, 1977;	00.071	70.000
Unnamed		Mineralized fault zone.	Bowersox and Chamberlin, 1995	37.050	70.844
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	37.148	70.801
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	37.154	70.808
Unnamed			Abdullah and others, 1977; Bowersox and Chamberlin, 1995	37.521	71.033
omanieu			Dower sox and Chamberlin, 1995	37.321	/1.033
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	37.558	71.100
			Abdullah and others, 1977;	1	
Unnamed		Mineralized contact zone.	Bowersox and Chamberlin, 1995	36.175	70.817
Unnamed		Hematite zone at contact of marble and gneiss contains galena-rich areas.	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	26 200	70.775
Unnamed		contains galetta-ticti ai eas.	Abdullah and others, 1977;	36.208	70.775
	I.		Bowersox and Chamberlin, 1995	37.688	71.238

	Synonym and Other	D !4									
Locality/Deposit Name		Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Unnamed			Badakhshan	37-51-30N	70-15-40E	Qtz COLL		Showing		talus	quartz, rock crystal
Unnamed			Badakhshan	37-52-15N	71-13-50E	Qtz COLL		Showing		alluvium	quartz, rock crystal
Unnamed			Badakhshan	37-55-00N	71-13-15E	Qtz COLL		Showing	Oligocene; Proterozoic	granite; sandstone, quartzite	quartz, rock crystal, geodes
Unnamed			Badakhshan	36-14N	71-09E	S	geothermal spring	Showing	Archean	metamorphic rocks	sulfur
Unnamed			Badakhshan	37-14-08N	71-01-25E	w	vein	Showing	Late Triassic-Middle Jurassic	siltstone	
Unnamed			Badakhshan	37-38-25N	70-54-50E	W	veins	Showing	Proterozoic	schist	
ı											
Unnamed*			Baghlan	36-01-57N	68-46-36E	COA					coal
Unnamed			Baghlan	35-18-24N	68-05-32E	Cu	shear zone	Showing	Late Triassic	acid volcanics, sandstone, conglomerate	chalcopyrite, malachite, sphalerit
Unnamed			Baghlan	35-19-00N	68-10-00E	Cu		Showing	Late Triassic	sandstone, volcanics, granodiorite	pyrite
Unnamed			,	35-24-14N	68-11-25E	Cu	skarn	Showing	Late Triassic; Late Cretaceous	granodiorite; limestone	
Unnamed			Baghlan Baghlan	35-36-00N	69-09-00E	Cu	shear zone	Showing	Early Triassic	granite	chalcopyrite, pyrite, magnetite
							Sileal Zorie	J	,		lf:-l
Unnamed			Baghlan	36-00-00N	69-11-16E	Cu		Showing	Late Triassic	granitic rocks	sulfides
Unnamed			Baghlan	36-02-22N	69-11-14E	Cu		Showing	Late Triassic	granitic rocks	Cu sulfides
Unnamed			Baghlan	35-44-20N	69-20-00E	F Ag	vein	Showing	Late Triassic	volcanics	fluorite, silver
Unnamed			Baghlan	35-39-42N	69-16-36E	Pb Zn	shear zone	Showing	Late Triassic	liparite-dacite	
Unnamed			Baghlan	36-04-14N	69-18-40E	Pb Zn		Showing	Late Triassic	volcanic rocks, hornfels	pyrite, limonite
Unnamed			Baghlan	35-47N	69-17-12E	Sn	shear zone	Showing	Middle-Late Triassic	ferruginous volcanics	
Unnamed Unnamed*			Baghlan Balkh	35-58-16N 36-33N	69-06-32E 66-48E	Zn Pb Hal	vein	Showing	Late Triassic	granite	chalcopyrite, galena, chrysocolla salt (rock)
Unnamed*			Balkh	36-24N	67-12E	S					sulfur
Unnamed*			Balkh	36-34N	67-09E	Si					silica sand, sandstone
Unnamed*			Bamian	34-30N	62-40E	COA					coal
Unnamed			Bamian	35-10-02N	67-31-41E	Cu		Showing	Middle-Late Triassic	siliceous rocks	chrysocolla
Unnamed			Bamian	34-47-30N	68-14-00E	Fe		Showing	Early Carboniferous		hematite, magnetite, barite
Unnamed			Bamian	34-47-18N	68-00-25E	W		Showing	Proterozoic; Oligocene	; granite	pyrite, galena, scheelite, chalcopyrite, pyrite, gold
Unnamed			Bamian or Vardek	34-14N	67-48E	Pb Zn	shear zone	Showing	Carboniferous-Early Permian; Oligocene	siltstone; granite	
Unnamed*			Farah	32-16N	62-21E	Cu		<u> </u>			
Unnamed			Farah	32-20-00N	62-19-00E	Cu	skarn	Showing	Early Cretaceous; Late Cretaceous-Paleocene	sediments; granite	Cu sulfides
Unnamed			Farah	32-35-00N	61-30-00E	Cu	shear zone	Showing	Early Cretaceous	volcanic sediments	chrysocolla
Unnamed			Farah	32-43-00N	62-56-00E	Cu Pb Zn	shear zone	Showing	Oligocene	granite	
Unnamed*			Farah	33-02-55N	61-41-40E	Cu		Occurrence			
Unnamed*			Farah	33-25N	63-15E	Fe					

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	37.858	70.261
			Abdullah and others, 1977;	07.074	74 004
Unnamed			Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	37.871	71.231
Unnamed			Bowersox and Chamberlin, 1995	37.917	71.221
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	36.233	71.150
Unnamed		Mineralized quartz vein.	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	27 224	71.024
Unnameu		Milleralized quartz veiii.	Abdullah and others, 1977;	37.236	71.024
Unnamed		Mineralized quartz veins.	Bowersox and Chamberlin, 1995	37.640	70.914
		Bowersox and Chamberlin (1995) gave province as Ghowr; Baghlan matches latitude-long. Also location and commodity match that	D 101 1 1 105	04.000	40.777
Unnamed*		of "Karkar" listed elsewhere in the table.	Bowersox and Chamberlin, 1995	36.033	68.777
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	35.307	68.092
			Abdullah and others, 1977;		
Unnamed		Granodiorite contact is mineralized.	Bowersox and Chamberlin, 1995	35.317	68.167
Unnamed			Abdullah and others, 1977; Bowersox and Chamberlin, 1995	35.404	68.190
Official			Abdullah and others, 1977;	33.404	00.170
Unnamed			Bowersox and Chamberlin, 1995	35.600	69.150
			Abdullah and others, 1977;	04.000	(0.400
Unnamed			Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	36.000	69.188
Unnamed			Bowersox and Chamberlin, 1995	36.039	69.187
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	35.739	69.333
Unnamed		Mineralized shear zone.	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	35.662	69.277
Ulliameu		Willier alized Shear zone.	Abdullah and others, 1977;	35.002	09.277
Unnamed			Bowersox and Chamberlin, 1995	36.071	69.311
			Abdullah and others, 1977;		
Unnamed		Mineralized fault zone.	Bowersox and Chamberlin, 1995	35.783	69.287
Unnamed		Mineralized quartz vein.	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	35.971	69.109
Unnamed*		Willier alized quartz vein.	Bowersox and Chamberlin, 1995	36.550	66.800
Unnamed*			Bowersox and Chamberlin, 1995	36.400	67.200
Unnamed*			Bowersox and Chamberlin, 1995	36.567	67.150
Unnamed*			Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	34.500	62.667
Unnamed			Bowersox and Chamberlin, 1995	35.167	67.528
Official		Northeast of Khaish iron deposit. Hematite	Abdullah and others, 1977;	33.107	07.520
Unnamed		float and Pb-Zn-Ba mineralization.	Bowersox and Chamberlin, 1995	34.792	68.233
			Abdullah and others, 1977;		
Unnamed		Mineralized contact zone. Province is reported as Ghazni, but latitude-	Bowersox and Chamberlin, 1995	34.788	68.007
		longitude is near Bamian-Vardek border.	Abdullah and others, 1977;		
Unnamed		Mineralized shear zone.	Bowersox and Chamberlin, 1995	34.233	67.800
Unnamed*			Bowersox and Chamberlin, 1995	32.267	62.350
Una a serie d			Abdullah and others, 1977;	22.000	(0.047
Unnamed			Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	32.333	62.317
Unnamed			Bowersox and Chamberlin, 1995	32.583	61.500
			Abdullah and others, 1977;	52.000	51.500
Unnamed		Quartz-sulfide veinlets.	Bowersox and Chamberlin, 1995	32.717	62.933
-		Location matches "Kelkak", a Sn-W occurrence			
Unnamed*		listed elsewhere in table.	Bowersox and Chamberlin, 1995	33.049	61.694

	C	D									
Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Unnamed			Farah	32-23N	61-19E	Pb Zn	shear zone	Showing	Early Cretaceous		malachite
Unnamed			Farah	32-59-30N	62-45-26E	Sn		Showing	Eocene-Oligocene	volcanics	
Unnamed*			Farah	33-05-45N	61-40-00E	Sn		D			
Unnamed			Farah	33-10-45N	61-55-04E	Sn Pb		Showing	Eocene-Oligocene	volcanics	hematite, galena, malachite
Unnamed*			Faryab	36-05N	64-41E	S		ccg	Edding diligations	Volcarios	sulfur
Unnamed			Ghazni	32-42-40N	67-21-30E	Au	skarn	Showing	Vendian-Cambrian; Late Cretaceous-Paleocene	limestone; diorite	magnetite
Unnamed			Ghazni	32-51-15N	67-23-15E	Au	veins	Showing	Ordovician	schist	
Unnamed			Ghazni	33-00-05N	67-36-20E	Au	veinlets	Showing	Late Permian	limestone	hematite, gold
Unnamed			Ghazni	33-02-40N	67-17-25E	Au	shear zone	Showing	Oligocene	granite	
Unnamed			Ghazni	33-02-40N	67-38-30E	Au		Showing	Early-Middle Devonian	limestone	
Unnamed			Ghazni	33-15-25N	67-24-20E	Au		Showing	Carboniferous-Early Permian; Oligocene	limestone, sandstone, siltstone; granite	
Unnamed			Ghazni	33-21-15N	67-19-30E	Au		Showing	Proterozoic	sandstone	
Unnamed			Ghazni	32-44-25N	67-16-45E	Cu	dike	Showing	Proterozoic;	altered rocks; diabase dike	
Unnamed			Ghazni	32-49-56N	67-13-59E	Cu	shear zone	Showing	Silurian	sandstone	
Unnamed			Ghazni	32-57-50N	67-10-15E	Cu		Showing	Oligocene	granite	chalcopyrite, bornite, malachite
Unnamed			Ghazni	33-01-50N	67-15-40E	Cu	vein	Showing	Early Cretaceous	diorite	chalcopyrite, bornite, malachite
Unnamed			Ghazni	33-04-25N	67-40-05E	Cu	vein	Showing	Ordovician	siltstone	sulfides
Unnamed			Ghazni	33-06N	67-26E	Cu	veins	Showing	Oligocene	granite	pyrite, galena, chalcopyrite
Unnamed			Ghazni	33-07-40N	67-23-10E	Cu		Showing	Oligocene;	granite; diorite	
Unnamed			Ghazni	33-10-35N	67-23-10E	Cu	veinlets	Showing	Late Devonian	sandstone	
Officialitied			Griazini			Cu	shear zone,	Showing	Late Cretaceous-	Salidstolle	
Unnamed			Ghazni Ghazni	33-11-50N 33-21N	67-48-40E 67-15E	Cu Cu	greisen?	Showing	Paleocene	diorite	
Unnamed* Unnamed*			Ghazni	33-18-10N	67-30-20E	Cu		Showing			
Unnamed			Ghazni	32-55-05N	67-19-10E	Cu Bi	vein	Showing	Oligocene	granite	
Unnamed			Ghazni	32-57-05N	67-12-50E	Cu Bi	vein	Showing	Oligocene;	granite; aplite dike	
Unnamed			Ghazni	33-09-25N	67-44-15E	Cu Pb Zn	skarn	Showing	Devonian; Oligocene	limestone; granite	pyrite, chalcopyrite, sphalerite, borosilicate
Unnamed			Ghazni	33-10-35N	67-47-05E	Cu Pb Zn	shear zone	Showing	Ordovician	sandstone	galena, sphalerite, chalcopyrite
Unnamed* Unnamed*		+	Ghazni Ghazni	33-30N 33-38N	67-00E 67-06E	Fe Mg		1			magnesite
omaneu			GHGZH	33-30IV	07-00L	ivig		+			magnesite
Unnamed			Ghazni	33-06-20N	67-16-10E	Pb Zn Au		Showing	Oligocene	granite	
Unnamed			Ghazni	33-06-50N	67-23-40E	Pb Zn	vein	Showing	Oligocene	granite	
Unnamed			Ghazni	33-12-55N	67-28-00E	Pb Zn		Showing	Oligocene	granite	
Unnamed			Ghazni	33-14-50N	67-16-20E	Sn		Showing	Early-Middle Devonian	sandstone	

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
			Abdullah and others, 1977;	1	
Unnamed			Bowersox and Chamberlin, 1995	32.383	61.317
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	32.992	62.757
Unnamed*		Location matches "Tourmaline", a Sn-Bi-Zn-W occurrence listed elsewhere in table.	Bowersox and Chamberlin, 1995	33.096	61.667
l lana and a		Min	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	22 170	(1.010
Unnamed Unnamed*		Mineralized fault zone.	Bowersox and Chamberlin, 1995 Bowersox and Chamberlin, 1995	33.179 36.083	61.918 64.683
Officialitied			Bowersox and Chamberlin, 1993	30.003	04.003
Unnamed			Abdullah and others, 1977; Bowersox and Chamberlin, 1995	32.711	67.358
			Abdullah and others, 1977;		
Unnamed		Mineralized veins.	Bowersox and Chamberlin, 1995	32.854	67.388
			Abdullah and others, 1977;		
Unnamed		Hematite veinlets.	Bowersox and Chamberlin, 1995	33.001	67.606
			Abdullah and others, 1977;		
Unnamed		Mineralized fault zone.	Bowersox and Chamberlin, 1995	33.044	67.290
Hannan al			Abdullah and others, 1977;	22.044	(7 (40
Unnamed			Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	33.044	67.642
Unnamed		Mineralized contact zone.	Bowersox and Chamberlin, 1995	33.257	67.406
Officialitied		Willief allized Contact Zone.	Abdullah and others, 1977;	33.237	07.400
Unnamed			Bowersox and Chamberlin, 1995	33.354	67.325
			Abdullah and others, 1977;		
Unnamed		Mineralized dike.	Bowersox and Chamberlin, 1995	32.740	67.279
			Abdullah and others, 1977;		
Unnamed		Mineralized fault zone.	Bowersox and Chamberlin, 1995	32.832	67.233
			Abdullah and others, 1977;		
Unnamed		Mineralized silicified zone.	Bowersox and Chamberlin, 1995	32.964	67.171
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	33.031	67.261
Unnamed		Quartz-sulfide vein.	Bowersox and Chamberlin, 1995	33.074	67.668
Ullianeu		Bowersox and Chamberlin list Oruzgan	Bowersox and Chamberlin, 1993	33.074	07.000
		Province but latitude-longitude is in Ghazni.	Abdullah and others, 1977;		
Unnamed		Quartz-sulfide veins.	Bowersox and Chamberlin, 1995	33.100	67.433
			Abdullah and others, 1977;		
Unnamed		Mineralized diorite contact.	Bowersox and Chamberlin, 1995	33.128	67.386
			Abdullah and others, 1977;		
Unnamed		Quartz veinlets with sulfides and oxides.	Bowersox and Chamberlin, 1995	33.176	67.646
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	33.197	67.811
Unnamed* Unnamed*			Bowersox and Chamberlin, 1995 Bowersox and Chamberlin, 1995	33.350 33.303	67.250 67.506
Unnamed"			Abdullah and others, 1977;	33.303	67.506
Unnamed		Mineralized quartz vein.	Bowersox and Chamberlin, 1995	32.918	67.319
Officialities		Willieranzea quartz veni.	Abdullah and others, 1977;	32.710	07.517
Unnamed		Mineralized quartz vein.	Bowersox and Chamberlin, 1995	32.951	67.214
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	33.157	67.738
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	33.176	67.785
Unnamed*			Bowersox and Chamberlin, 1995	33.500	67.000
Unnamed*			Bowersox and Chamberlin, 1995	33.633	67.100
			Abdullah and others, 1977;	00.555	
Unnamed		Mineralized silicified zone.	Bowersox and Chamberlin, 1995	33.106	67.269
Unnamed		Minoralized quartz voin	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	33.114	67.204
Unnamed		Mineralized quartz vein.	Abdullah and others, 1977:	33.114	67.394
Unnamed		Mineralized silicified zone.	Bowersox and Chamberlin, 1995	33.215	67.467
Officialities		Willier direct Sillerieu Zorie.	Abdullah and others, 1977;	33.213	07.407
	1	Mineralized silicified and shattered zone.	Bowersox and Chamberlin, 1995	33.247	67.272

		.									
Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Unnamed			Ghazni	33-18-10N	67-40-20E	Sn Cu Zn Pb		Showing	Late Permian; Oligocene	limestone; granite	galena, bornite, cuprite, covellite, malachite
Unnamed			Ghazni	33-35N	68-38E	TIC		Showing	Early Carboniferous; Pliocene	marble; slate	talc, magnesite
Unnamed			Ghazni	32-46-12N	67-21-30E	w	veins	Showing	Proterozoic; Oligocene	hornfels; granite	scheelite
Unnamed			Ghazni	33-08-40N	67-27-30E	w	shear zone	Showing	Oligocene	granite	
Unnamed			Ghazni	33-27-48N	68-10-20E	W	skarn	Showing	Proterozoic	hornfels, schist, sandstone	scheelite
Unnamed* Unnamed*			Ghowr? Ghowr	34-42N 34-09-00N	66-16E 64-17-00E	COA Cu	veinlets	Showing	Early-Middle Jurassic	shale	coal
Unnamed			Ghowr	34-31N	65-25E	Cu Pb Zn	shear zone	Showing	Eocene	siltstone	
Unnamed			Ghowr	34-19N	64-04E	Fe	shear zone	Showing	2000110	Sinstone	hematite
Unnamed			Ghowr	34-22N	64-33E	Fe	shear zone	Showing	Early Carboniferous; Pliocene		
Unnamed			Ghowr	34-34N	64-55E	Fe	shear zone	Showing	Eocene	sediments	hematite, pyrite
Unnamed			Ghowr	33-25N	64-20E	Hg		Showing	Early Cretaceous;	sediments; diorite and andesite porphyry dikes	cinnabar
Unnamed			Ghowr	34-14N	64-54E	Pb Zn Cu		Showing	Late Devonian-Early Carboniferous	limestone	galena
Unnamed			Ghowr	34-15-30N	64-34-00E	Pb Zn	shear zone	Showing	Early-Middle Jurassic		sulfides
Unnamed			Ghowr	34-16-00N	64-35-30E	Pb Zn	shear zone	Showing	Early-Middle Jurassic	limestone	
Unnamed			Ghowr	34-17N	64-34E	Pb Zn		Showing	Eocene-Oligocene	sandstone, conglomerate, clay	
Unnamed*			Ghowr	34-30N 34-32N	66-00E 66-11E	Pb Zn Pb Zn					
Unnamed			Ghowr	33-47N	64-20E	Qtz	veins	Showing	Early Cretaceous	sandstone	quartz
Unnamed			Ghowr	33-48N	64-16E	Qtz	veins	Showing	Early Cretaceous	sandstone	quartz
							Verilis		Late Jurassic-Early	volcanic sedimentary	
Unnamed			Helmand	33-04N	65-00E	Zn		Showing	Cretaceous Late Jurassic-Early	rocks	limonite, malachite, azurite
Unnamed			Herat	33-41-00N	61-14-00E	Cu		Showing	Cretaceous Late Jurassic-Early	keratophyre volcanics, quartz	malachite, azurite, chalcopyrite
Unnamed			Herat	33-44-00N	61-17-00E	Cu		Showing	Cretaceous	porphyry	pyrite
Unnamed			Herat	33-47-00N	61-17-00E	Cu	vein	Showing	; Late Jurassic-Early Cretaceous	diabase dike; quartz porphyry	chalcopyrite
Unnamed			Jowzjan	35-46N	65-53E	Pb Zn		Showing	Proterozoic	schist, conglomerate	
Unnamed			Kabol	34-21-40N	69-39-15E	Cu	shear zone	Showing	Eocene; Paleogene	serpentinite; siltstone	malachite
Unnamed			Kabol	34-24-30N	69-06-00E	Cu	veins	Showing	Vendian-Cambrian	schist	chalcopyrite, malachite
Unnamed			Kabol	34-25-10N	69-01-53E	Cu	vein	Showing	Late Triassic	limestone	chalcopyrite, malachite
Unnamed			Kabol	34-26-10N	68-59-20E	Cu	vein	Showing	Proterozoic	metamorphic rocks	chalcopyrite
Unnamed			Kabol	34-27-00N	68-55-00E	Cu	shear zone	Showing	Proterozoic	quartzite, carbonated rocks	
Unnamed			Kabol	34-28-00N	68-57-15E	Cu	shear zone	Showing	Proterozoic	quartzite, marble	

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	33.303	67.672
			Abdullah and others, 1977;		
Jnnamed			Bowersox and Chamberlin, 1995	33.583	68.633
Unnamed		2 guartz vains with schoolite grains	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	22.770	47.250
Unnamed		2 quartz veins with scheelite grains. Silicified shear zone over 11000 m long and 30		32.770	67.358
Unnamed		75 m thick with W mineralization.	Bowersox and Chamberlin, 1995	33.144	67.458
		2 skarn zones 70 m by 3-6 m and 18 m by 2	Abdullah and others, 1977;		
Unnamed		m.	Bowersox and Chamberlin, 1995	33.463	68.172
		Bowersox and Chamberlin give Paktia as the			
		Province, but lat-long is in Ghowr near Jowzjan	D 101 1 1 1005	0.4.700	
Unnamed* Unnamed*		border.	Bowersox and Chamberlin, 1995 Bowersox and Chamberlin, 1995	34.700 34.150	
Unnameu			Abdullah and others, 1977;	34.150	04.203
Unnamed			Bowersox and Chamberlin, 1995	34.517	65.417
			Abdullah and others, 1977;		
Unnamed		Mineralized shear zone.	Bowersox and Chamberlin, 1995	34.317	64.067
			Abdullah and others, 1977;		
Unnamed		Mineralized fault zone.	Bowersox and Chamberlin, 1995	34.367	64.550
Una a mand		Minara line of facility many	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	245/7	(4.017
Unnamed		Mineralized fault zone.	Bowersox and Chamberlin, 1995	34.567	64.917
Unnamed		Mineralized metasomatite zone.	Abdullah and others, 1977	33.417	64.333
			Abdullah and others, 1977;		
Unnamed		Mineralized breccia zone.	Bowersox and Chamberlin, 1995	34.233	64.900
			Abdullah and others, 1977;	04.050	(45/7
Unnamed		Mineralized shear zone.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	34.258	64.567
Unnamed		Mineralized shear zone.	Bowersox and Chamberlin, 1995	34.267	64.592
			Abdullah and others, 1977;		
Unnamed		Mineralized clay layer.	Bowersox and Chamberlin, 1995	34.283	64.567
		Location matches "Kushk", a Pb-Zn-Cu			
Unnamed*		occurrence listed elsewhere in table.	Bowersox and Chamberlin, 1995	34.500	
Unnamed			Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	34.533	66.183
Unnamed			Bowersox and Chamberlin, 1995	33.783	64.333
Ulliameu			Abdullah and others, 1977;	33.763	04.333
Unnamed			Bowersox and Chamberlin, 1995	33.800	64.267
			Abdullah and others, 1977;		
Unnamed		Four mineralized shear zone.	Bowersox and Chamberlin, 1995	33.067	65.000
		Bowersox and Chamberlin give a longitude of	Abdullah and others, 1977;		
Unnamed		71-14E, which is in Pakistan.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	33.683	61.233
Unnamed			Bowersox and Chamberlin, 1995	33.733	61.283
Ullianieu			Abdullah and others, 1977;	33.733	01.203
Unnamed		Mineralized quartz vein.	Bowersox and Chamberlin, 1995	33.783	61.283
		Although reported as Ghowr Province, latitude-	-		
		longitude is in Jowzjan. Mineralized	Abdullah and others, 1977;		
Unnamed		ferruginous zone.	Bowersox and Chamberlin, 1995	35.767	65.883
			Abdullah and others, 1977;		
Unnamed		Mineralized fault zone.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	34.361	69.654
Unnamed			Bowersox and Chamberlin, 1995	34.408	69.100
Officiality			Abdullah and others, 1977;	34.400	57.100
Unnamed		Mineralized quartz vein.	Bowersox and Chamberlin, 1995	34.419	69.031
		4	Abdullah and others, 1977;	2	
Unnamed		Mineralized quartz vein.	Bowersox and Chamberlin, 1995	34.436	68.989
<u></u>			Abdullah and others, 1977;		
Unnamed		Mineralized fault zone.	Bowersox and Chamberlin, 1995	34.450	68.917
Una ana a			Abdullah and others, 1977;	24 447	(0.654
Unnamed			Bowersox and Chamberlin, 1995	34.467	68.954

Locality/Deposit Name Unnamed*	Synonym and Other Names or Spellings	Deposit or									
Unnamed*		District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
			Kabol	34-28N	69-05E	Cu					
Unnamed			Kandahar	31-53-38N	66-01-17E	Au	shear zone	Showing	Early Cretaceous	limestone	
Unnamed			Kandahar	31-41-30N	65-14-40E	Cr		Showing	Early Cretaceous	ultrabasic rocks	chromite
Unnamed			Kandahar	31-53-14N	65-59-29E	Cr		Showing	Cretaceous; Quaternary	peridotite; eluvium	chromite
Unnamed			Kandahar	30-03-00N	66-08-00E	Cu	disseminated	Showing	Late Cretaceous;	volcanics; limestone	chalcopyrite
Unnamed			Kandahar	30-17-00N	66-10-00E	Cu	disseminated	Showing	Oligocene Late Cretaceous;	granite	chalcopyrite
Unnamed			Kandahar	31-07-00N	66-10-00E	Cu	skarn	Showing	Oligocene Oligocene; Late	marble; granite	
Unnamed			Kandahar	31-08-00N	66-13-00E	Cu	skarn	Showing	Cretaceous	granite; limestone	
Unnamed			Kandahar	31-15-17N	66-04-16E	Cu		Showing	Early Cretaceous	conglomerate	
Unnamed			Kandahar	31-23N	66-23E	Cu	shear zone	Showing	Early Cretaceous	limestone	
Unnamed			Kandahar	31-46-48N	65-53-00E	Cu		Showing	Early Cretaceous	serpentinite	pyrite, chalcopyrite, malachite, azurite, covellite
Unnamed			Kandahar	31-54-11N	65-53-22E	Cu	veinlets	Showing	Oligocene	granite	chalcopyrite, bornite, chrysocolla, malachite, jarosite
Unnamed			Kandahar	31-54-49N	65-59-32E	Cu	shear zone	Showing	Oligocene	granite	pyrite, chalcopyrite
Unnamed			Kandahar	31-57-08N	65-51-32E	Cu	vein	Showing	Oligocene	granite	malachite, azurite
Unnamed*			Kandahar	32-05N	65-55E	Cu		Occurrence			
Unnamed*			Kandahar	32-15-17N	65-59-02E	Cu		Occurrence			
Unnamed			Kandahar	32-18-17N	65-57-20E	Cu		Showing	Early Triassic;	limestone; porphyry dike;	pyrite, chalcopyrite
Unnamed*			Kandahar	32-18N	65-54E	Cu					
Unnamed*			Kandahar	32-23-00N	66-23-00E	Cu		Showing			
Unnamed			Kapisa	35-29-12N	69-48-00E	Zn	shear zone	Showing	Proterozoic	marble, schist	limonite, pyrite
Unnamed			Konar	34-52N	70-43E	GEM					kunzite
Unnamed*			Konar	35-22N	70-58E	GEM					kunzite
Unnamed*			Konar	35-28N	71-09E	GEM					kunzite
Unnamed*			Konar	35-35N	71-05E	GEM					kunzite
Unnamed* Unnamed*			Konar Konar	35-42N 35-50N	71-07E	GEM GEM					kunzite kunzite
					71-15E			Chaudan	Destruction Oliverna		
Unnamed			Laghman	34-38N	69-50E	Be	pegmatite	Showing	Proterozoic; Oligocene	gneiss; granite	beryl
Unnamed			Lowgar	34-11-45N	68-59-40E	Asb		Showing	Eocene	peridotite	asbestos
Unnamed			Lowgar	34-12-25N	68-57-55E	Asb		Showing	Eocene	peridotite	asbestos
Unnamed			Lowgar	34-13-40N	68-59-30E	Asb		Showing	Eocene	ultrabasic intrusions	asbestos
Unnamed			Lowgar	34-08-50N	68-58-05E	Asb Cr	veinlets, igneous	Showing			asbestos
Unnamed			Lowgar	34-14-10N	68-52-20E	Cr	igneous	Showing	Eocene	ultrabasic intrusions	chromite
Unnamed			Lowgar	34-16-20N	68-53-10E	Cr		Showing	Eocene	peridotite	chromite
Unnamed*			Lowgar	33-57N	69-18E	Cu	1.	CI :		porphyry; limestone,	
Unnamed Unnamed*			Lowgar Lowgar	34-02-00N 33-50N	69-22-00E 69-42E	Cu Mica	shear zone	Showing	Eocene; Late Triassic	siltstone	malachite, azurite, brochantite mica

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
Unnamed*			Bowersox and Chamberlin, 1995	34.467	69.083
Officialities			Abdullah and others, 1977;	34.407	07.003
Unnamed		Mineralized shear zone.	Bowersox and Chamberlin, 1995	31.894	66.021
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	31.692	65.244
			Abdullah and others, 1977;		
Unnamed		Chromite in eluvium overlying peridotite.	Bowersox and Chamberlin, 1995	188	216
		Disseminated mineralization in altered	Abdullah and others, 1977;		
Unnamed		limestone.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	30.050	66.133
Unnamed			Bowersox and Chamberlin, 1995	30.283	66.167
Ulliameu			Abdullah and others, 1977;	30.263	00.107
Unnamed			Bowersox and Chamberlin, 1995	31.117	66.167
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	31.133	66.217
			Abdullah and others, 1977;		
Unnamed		Mineralized, silicified fractures.	Bowersox and Chamberlin, 1995	31.255	66.071
Unnamed		Mineralized shear zone.	Abdullah and others, 1977	31.383	66.383
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	192	463
Unanana			Abdullah and others, 1977;	400	4//2
Unnamed			Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	192	462
Unnamed		Mineralized shear zone.	Bowersox and Chamberlin, 1995	192	461
Unnameu		Willieralized Shear Zone.	Abdullah and others, 1977;	192	401
Unnamed		Mineralized quartz vein.	Bowersox and Chamberlin, 1995	192	460
Official		Location matches "9390", a Pb-Zn-Cu	Developed and chambering 1776	172	.00
Unnamed*		occurrence listed elsewhere in table. Location matches "7757", a Pb-Zn-Aq-Cu	Bowersox and Chamberlin, 1995	189	282
Unnamed*		occurrence listed elsewhere in table.	Bowersox and Chamberlin, 1995	32.255	65.984
			Abdullah and others, 1977;		
Unnamed		Mineralized porphyry dike.	Bowersox and Chamberlin, 1995	32.305	65.956
Unnamed*			Bowersox and Chamberlin, 1995	32.300	
Unnamed*			Bowersox and Chamberlin, 1995	32.383	66.383
			Abdullah and others, 1977;		
Unnamed		Mineralized shear zone.	Bowersox and Chamberlin, 1995	35.487	
Unnamed		Pawaraay and Chambarlin (100E) gaya	Bowersox and Chamberlin, 1995	34.867	70.717
		Bowersox and Chamberlin (1995) gave longitude as 70-69E; 70-59E plots in Konar			
Unnamed*		Province.	Bowersox and Chamberlin, 1995	35.367	70.967
Unnamed*		Trovince.	Bowersox and Chamberlin, 1995	35.467	
Unnamed*			Bowersox and Chamberlin, 1995	35.583	71.083
Unnamed*			Bowersox and Chamberlin, 1995	35.700	
Unnamed*			Bowersox and Chamberlin, 1995	35.833	71.250
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	34.633	69.833
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	34.196	68.994
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	34.207	68.965
Unanana			Abdullah and others, 1977;	24.220	(0.000
Unnamed			Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	34.228	68.992
Unnamed			Bowersox and Chamberlin, 1995	34.147	68.968
Officialities			Abdullah and others, 1977;	34.147	00.700
Unnamed			Bowersox and Chamberlin, 1995	34.236	68.872
22.1100			Abdullah and others, 1977;	5 1.250	55.572
Unnamed		Chromite float.	Bowersox and Chamberlin, 1995	34.272	68.886
Unnamed*			Bowersox and Chamberlin, 1995	33.950	69.300
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	34.033	69.367
Unnamed*			Bowersox and Chamberlin, 1995	33.833	69.700

	Synonym and Other	Deposit or									
Locality/Deposit Name		District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Unnamed			Nangarhar	34-15N	69-50E	Qtz COLL	vein	Showing	Proterozoic	quartzite	quartz, rock crystal
Unnamed*			Oruzgan			Bi		Showing			
Unnamed			Oruzgan	32-58-00N	66-45-00E	Cu	shear zone	Showing	Oligocene Carboniferous-Early	granite	
Unnamed			Oruzgan	32-58-30N 33-00-40N	66-49-00E	Cu		Showing	Permian; Oligocene	limestone; granite	
Unnamed*			Oruzgan		66-51-20E	Cu		Showing			
Unnamed			Oruzgan	33-01-00N	66-50-00E	Cu	skarn	Showing	Oligocene; Late Permian	granite; limestone	magnetite, Cu minerals pyrite, magnetite, chalcopyrite,
Unnamed			Oruzgan	33-01-30N	66-52-00E	Cu	skarn	Showing	Late Permian	limestone	malachite
Unnamed			Oruzgan	33-35-09N	66-30-02E	Cu	shear zone	Showing	Oligocene	granite	malachite
Unnamed			Oruzgan	33-38-55N	66-04-33E	Cu	shear zone	Showing	Oligocene	granite	malachite
							pegmatite, shear			metamorphic rocks;	
Unnamed*			Oruzgan Oruzgan	33-43-17N 33-46N	66-20-46E 67-08E	Cu	zone	Showing	Proterozoic;	pegmatites	muscovite, tourmaline, malachite
			J.							metamorphic rocks:	
Unnamed			Oruzgan	33-47-16N	66-36-18E	Cu	pegmatite	Showing	Proterozoic; Oligocene	metamorphic rocks; pegmatite, granite dikes	sulfides
Unnamed			Oruzgan	33-47-21N	66-45-09E	Cu		Showing	Oligocene	granite	
										granite; lamprophyre	10.1
Unnamed			Oruzgan	33-48-30N	66-34-00E	Cu		Showing	Oligocene;	dike	sulfides
Unnamed			Oruzgan	33-51-40N	66-34-53E	Cu		Showing	Proterozoic	granite hornfelsic silty	
Unnamed			Oruzgan	33-53-03N	66-37-28E	Cu	veinlets	Showing	Proterozoic	sandstone	sulfides
Unnamed			Oruzgan	33-53-40N	66-41-00E	Cu	shear zone	Showing	Proterozoic;	schist; pegmatite dikes	malachite
Unnamed			Oruzgan	33-57-12N	66-45-08E	Cu	veins	Showing	Proterozoic	diorite, granite	sulfides
Unnamed			Oruzgan	33-57-41N	66-35-00E	Cu		Showing	Proterozoic	granite gneiss	malachite
Unnamed			Oruzgan	33-53-30N	66-51-48E	Mn		Showing	Proterozoic	marl	maiacilite
Unnamed			Oruzgan	33-59N	66-36E	Hg	breccia	Showing	Proterozoic	metamorphic rocks	cinnabar
Unnamed			Oruzgan	33-43-29N	66-29-45E	Li	pegmatite	Showing	Oligocene	granite	sulfides
Unnamed			Oruzgan	33-46N	66-06E	Pb	skarn	Showing	Proterozoic	limestone	sulfides
Unnamed			Oruzgan	33-00-30N	66-51-20E	Pb Zn Cu	skarn	Showing	Oligocene; Late Permian	granite; limestone	galena, pyrite, chalcopyrite
Unnamed			Oruzgan	33-40-55N	66-13-50E	Sn	pegmatite	Showing	Proterozoic	metamorphic rocks	
Unnamed			Oruzgan	33-44-24N	66-32-12E	Sn	pegmatite	Showing	Proterozoic	metamorphic rocks	
Unnamed			Oruzgan	33-46-05N	66-41-33E	Sn	shear zone	Showing	Oligocene	granite	sulfides
Unnamed			Oruzgan	33-47-15N	66-45-27E	Sn	shear zone	Showing	Oligocene	granite	
Unnamed			Oruzgan	33-48-36N	66-43-11E	Sn	vein, shear zone	Showing	Oligocene	granite	cassiterite, sulfides
Unnamed			Oruzgan	33-52-48N	66-35-35E	Sn	shear zone	Showing	Proterozoic		
Unnamed			Oruzgan	34-00N	66-40E	Sn	pegmatite	Showing	Proterozoic		cassiterite
Unnamed			Oruzgan	34-03N	66-40E	Sn	veinlets	Showing			
Unnamed			Oruzgan	33-35-23N	66-16-06E	Sn Be	pegmatite	Showing	Proterozoic	metamorphic rocks	<u> </u>

	Demonit Cinc ()			Dealm-1	Dooim - !
Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
			AL L. II. L. III. L. II. L. III. L. I		
Unnamed			Abdullah and others, 1977; Bowersox and Chamberlin, 1995	24.250	(0.000
Unnamed*			Bowersox and Chamberlin, 1995 Bowersox and Chamberlin, 1995	34.250	69.833
Utiliameu			Abdullah and others, 1977;		
Jnnamed			Bowersox and Chamberlin, 1995	32.967	66.750
Jillamed			Abdullah and others, 1977:	32.707	00.730
Jnnamed		Mineralized contact.	Bowersox and Chamberlin, 1995	32.975	66.817
Unnamed*		William Education	Bowersox and Chamberlin, 1995	33.011	66.856
Jillianioa .			Abdullah and others, 1977:	00.011	00.000
Unnamed			Bowersox and Chamberlin, 1995	33.017	66.833
ormanioa			Abdullah and others, 1977;	00.017	00.000
Unnamed			Bowersox and Chamberlin, 1995	33.025	66.867
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	33.586	66.501
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	33.649	66.076
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	33.721	66.346
Unnamed*			Bowersox and Chamberlin, 1995	33.767	67.133
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	33.788	66.605
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	33.789	66.753
			Abdullah and others, 1977;		
Jnnamed		Mineralized dike.	Bowersox and Chamberlin, 1995	33.808	66.567
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	33.861	66.581
			Abdullah and others, 1977;		
Jnnamed			Bowersox and Chamberlin, 1995	33.884	66.624
			Abdullah and others, 1977;		
Jnnamed			Bowersox and Chamberlin, 1995	33.894	66.683
			Abdullah and others, 1977;		
Jnnamed			Bowersox and Chamberlin, 1995	33.953	66.752
			Abdullah and others, 1977;		
Jnnamed			Bowersox and Chamberlin, 1995	33.961	66.583
Jnnamed			Abdullah and others, 1977	33.892	66.863
			Abdullah and others, 1977;		
Unnamed		Mineralized breccia.	Bowersox and Chamberlin, 1995	33.983	66.600
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	33.725	66.496
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	33.767	66.100
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	33.008	66.856
			Abdullah and others, 1977;		
Jnnamed			Bowersox and Chamberlin, 1995	33.682	66.231
			Abdullah and others, 1977;		
Jnnamed			Bowersox and Chamberlin, 1995	33.740	66.537
			Abdullah and others, 1977;		
Jnnamed		Mineralized shear zone.	Bowersox and Chamberlin, 1995	33.768	66.693
			Abdullah and others, 1977;		
Jnnamed	I	Mineralized shear zone.	Bowersox and Chamberlin, 1995	33.788	66.758
			Abdullah and others, 1977;		
Jnnamed		Mineralized quartz vein and shear zone.	Bowersox and Chamberlin, 1995	33.810	66.720
		4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	Abdullah and others, 1977;		
Unnamed	I	Mineralized shear zone.	Bowersox and Chamberlin, 1995	33.880	66.593
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	34.000	66.667
			Abdullah and others, 1977;		
Unnamed		Quartz-tourmaline veinlets.	Bowersox and Chamberlin, 1995	34.050	66.667
			Abdullah and others, 1977;		
Unnamed	I		Bowersox and Chamberlin, 1995	33.590	66.268
	i contraction of the contraction	T. Control of the Con		33.370	00.200

Significant Minerals or Materia ic rocks estone ist malachite pyrite malachite, sulfides limonite, malachite sulfides
malachite pyrite malachite, sulfides cks limonite, malachite
malachite pyrite malachite, sulfides ks limonite, malachite
malachite pyrite malachite, sulfides ks limonite, malachite
pyrite malachite, sulfides limonite, malachite
malachite, sulfides limonite, malachite
cks limonite, malachite
sulfides
sulfides
ic rocks wolframite, vesuvianite
slate,
chrysocolla
te
barite
barite, galena
barite
pyrite, hematite, limonite
coal
galena
celestite
beryl
ocks talc
ite
iss, marble, scheelite
stone
is

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
			Abdullah and others, 1977:		
Unnamed			Bowersox and Chamberlin, 1995	33.617	66.253
			Abdullah and others, 1977;		
Unnamed		Mineralized contact zone.	Bowersox and Chamberlin, 1995	33.480	66.350
			Abdullah and others, 1977;		
Unnamed		Mineralized hornfels at granite contact.	Bowersox and Chamberlin, 1995	33.818	66.736
			Abdullah and others, 1977;		
Unnamed		Minaralia da contra contra la contra de a contra de la contra dela contra de la contra del la contra	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	33.806	66.739
Unnamed		Mineralized quartz veinlets in zone over 1000 m long and 10-15 m thick.	Bowersox and Chamberlin, 1995	33.723	66.776
Ullianieu		Shear zone with quartz veinlets and	Abdullah and others, 1977;	33.723	00.770
Unnamed		disseminated sulfides.	Bowersox and Chamberlin, 1995	33.738	66.734
			Abdullah and others, 1977;		
Unnamed		Brecciated mineralized shear zones.	Bowersox and Chamberlin, 1995	33.853	66.658
		Mineralized ferruginous shear zones 10-20 m	Abdullah and others, 1977;		
Unnamed		long and 10-30 cm thick.	Bowersox and Chamberlin, 1995	33.900	66.977
		Thin shear zones with disseminated sulfides	Abdullah and others, 1977;		
Unnamed		and limonitic films.	Bowersox and Chamberlin, 1995	33.931	66.165
		Are to the contract of the con	Abdullah and others, 1977;	00.000	// 040
Unnamed		Mineralized quartz veins.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	33.988	66.813
Unnamed		Altered limestone in tectonic lens along a fault.	Bowersox and Chamberlin, 1995	33.253	69.626
Officialitied		Artered limestone in tectoric lens along a radit.	Abdullah and others, 1977;	33.233	07.020
Unnamed		Mineralized limonite-rich zone.	Bowersox and Chamberlin, 1995	33.268	69.610
		Mineralization in metasomatically-altered	Abdullah and others, 1977;		
Unnamed		rocks.	Bowersox and Chamberlin, 1995	33.180	69.623
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	34.983	68.625
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	35.017	68.625
Harana and			Abdullah and others, 1977; Bowersox and Chamberlin, 1995	25 022	(0.422
Unnamed Unnamed*			Bowersox and Chamberlin, 1995 Bowersox and Chamberlin, 1995	35.033 35.250	68.633 69.583
Officialitied			Abdullah and others, 1977;	33.230	07.303
Unnamed			Bowersox and Chamberlin, 1995	35.478	67.816
			Abdullah and others, 1977;		
Unnamed		Mineralized hydrothermally altered zones.	Bowersox and Chamberlin, 1995	36.318	70.269
		Bowersox and Chamberlin (1995) gave			
		Longitude as 38-22E which is not correct;			
Unnamed		believed to be 69-22E if in Takhar Province.	Bowersox and Chamberlin, 1995	36.200	69.367
l lana and a		A 4:	Abdullah and others, 1977;	2/ 4/5	(0.500
Unnamed Unnamed*		Mineralized silicified zone.	Bowersox and Chamberlin, 1995 Bowersox and Chamberlin, 1995	36.465 36.283	69.509 69.467
Ullianeu			Abdullah and others, 1977;	30.263	09.407
Unnamed			Bowersox and Chamberlin, 1995	34.383	68.867
Unnamed*			Bowersox and Chamberlin, 1995	34.550	68.450
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	33.900	68.733
		Mineralized ferruginous shear zone 1250 m	Abdullah and others, 1977;		
Unnamed		long and 100-150 m thick.	Bowersox and Chamberlin, 1995	33.903	68.617
Unanana d			Abdullah and others, 1977;	22.010	(0./10
Unnamed		10 m thick, with disseminated scheelite.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	33.918	68.619
Unnamed		Mineralized shear zone.	Bowersox and Chamberlin, 1995	194	589
oamea		minoralized shedi zone.	Abdullah and others, 1977;	174	307
Unnamed		Mineralized breccia at contact.	Bowersox and Chamberlin, 1995	194	588
* *			Abdullah and others, 1977;		
Unnamed		Mineralized silicified zone.	Bowersox and Chamberlin, 1995	32.283	66.577
			Abdullah and others, 1977;		
Unnamed	I		Bowersox and Chamberlin, 1995	32.487	66.684

Locality/Deposit Name	Synonym and Other Names or Spellings	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Unnamed			Zabol	32-30-07N	66-43-55E	Au	veins	Showing	Oligocene; Proterozoic	granite; gneissic sandstone	
Unnamed			Zabol	32-31-48N	66-47-28E	Au		Showing	Proterozoic	sandstone	
Unnamed			Zabol	32-33-31N	66-33-29E	Au		Showing	Oligocene; Late Permian	granite; dolomite	
Unnamed			Zabol	32-34-11N	66-45-35E	Au	vein	Showing	Proterozoic; Oligocene	sandstone; granite	
Unnamed			Zabol	32-35-28N	66-46-09E	Au	vein	Showing	Ordovician; Oligocene	quartzite; granite	
Unnamed			Zabol	32-35-52N	66-40-09E	Au	vein	Showing	Oligocene	granodiorite	
Unnamed			Zabol	32-38-27N	66-39-30E	Au		Showing	Late Devonian; Oligocene	limestone; granodiorite	
Unnamed			Zabol	32-44-32N	67-03-09E	Au	shear zone	Showing	Silurian	sandstone	hematite
Unnamed			Zabol	32-13-27N	66-37-10E	Au Cu	skarn	Showing	Late Permian; Late Cretaceous-Paleocene	limestone; diorite	chalcopyrite, malachite, azurite, gold
Unnamed			Zabol	32-44-26N	67-04-33E	Au Cu	veins	Showing	Proterozoic	sandstone	
Unnamed			Zabol	32-28-07N	66-37-13E	Cu	shear zone, hydrothermal	Showing	Oligocene	granite	
Unnamed			Zabol	32-29-17N	67-01-30E	Cu		Showing	Proterozoic	sandstone	
Unnamed			Zabol	32-34-11N	66-33-01E	Cu	skarn	Showing	Oligocene; Late Permian	granite; dolomite	
Unnamed			Zabol	32-36-07N	67-05-35E	Cu	vein	Showing	Proterozoic	sandstone	
Unnamed			Zabol	32-38-18N	66-33-08E	Cu	vein	Showing	Devonian; Oligocene	sandstone; granite	
Unnamed			Zabol	32-38-18N	66-55-27E	Cu		Showing	Ordovician	sandstone	chalcopyrite, chrysocolla
Unnamed			Zabol	32-42-10N	67-13-45E	Cu		Showing	Proterozoic	sandstone	
Unnamed			Zabol	32-43-22N	67-01-22E	Cu	shear zone	Showing	Oligocene; Silurian	granite; sediments	chalcopyrite, chrysocolla
Unnamed			Zabol	32-43-44N	67-02-30E	Cu		Showing	Proterozoic	schist	chalcopyrite
Unnamed			Zabol	32-45-59N	67-03-13E	Cu	vein	Showing	Silurian	limestone	chalcopyrite, malachite
Unnamed			Zabol	32-46-30N	66-45-30E	Cu	skarn	Showing	Oligocene; Vendian- Cambrian	granite; calcareous sediments	
Unnamed			Zabol	32-14-11N	66-25-45E	Cu Au	skarn	Showing	Late Cretaceous- Paleocene; Silurian	diorite; sandstone, limestone	pyrite, chalcopyrite, magnetite, garnet
Unnamed			Zabol	32-30-34N	66-40-56E	Cu Au	skarn	Showing	Oligocene; Vendian- Cambrian	granite; limestone	
Unnamed			Zabol	32-44-27N	67-04-51E	Cu Au	vein	Showing	Proterozoic	metasandstone	chalcopyrite, pyrite
Unnamed			Zabol	32-43-11N	66-46-08E	Fe		Showing	Oligocene	granodiorite	hematite
Unnamed			Zabol	32-30-40N	66-40-40E	w	skarn	Showing	Oligocene; Ordovician	granite; marble	
Unnamed			Zabol	32-32-32N	66-34-55E	w	shear zone	Showing	Oligocene	granite granite	
Unnamed			Zabol	32-36-51N	66-55-36E	w	shear zone, vein	Showing	Proterozoic	sandstone	
Unnamed			Zabol	32-44-04N	66-43-20E	w	skarn	Showing	Oligocene; Cambrian	granite; marble	
Unnamed			Zabol	32-44-04N	66-55-05E	w	skarn	Showing	Oligocene; Devonian	granite; limestone	
						W	SKIII				chalconyrite schoolite malachite
Jnnamed			Zabol	32-45-56N	66-58-14E	VV	1	Showing	Oligocene	granite	chalcopyrite, scheelite, malachite

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References	Decimal Latitude	Decimal Longitude
Locality/ Deposit Ivallie	Orace	Comments	References	Latitude	Longitude
			Abdullah and others, 1977;		
Unnamed		Mineralized quartz veins.	Bowersox and Chamberlin, 1995	32.502	66.732
Unnamad		Minoralized cilicitied zone	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	22 520	66.791
Unnamed		Mineralized silicified zone.	Abdullah and others, 1977;	32.530	66.791
Unnamed		Mineralized silicified zone.	Bowersox and Chamberlin, 1995	32.559	66.558
			Abdullah and others, 1977;		
Unnamed		Mineralized quartz vein.	Bowersox and Chamberlin, 1995	32.570	66.760
Unanana d		A dia and in a diameter contra	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	22 501	// 7/0
Unnamed		Mineralized quartz vein.	Abdullah and others, 1977;	32.591	66.769
Unnamed		Mineralized quartz vein.	Bowersox and Chamberlin, 1995	32.598	66.669
			Abdullah and others, 1977;		
Unnamed		Mineralized contact zone.	Bowersox and Chamberlin, 1995	32.641	66.658
Una ana a		A Air-realise of South South	Abdullah and others, 1977;	22.742	(7.052
Unnamed		Mineralized fault zone.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	32.742	67.053
Unnamed			Bowersox and Chamberlin, 1995	32.224	66.619
Omamou			Abdullah and others, 1977;	OZ.ZZ I	00.017
Unnamed		Mineralized quartz veins and veinlets.	Bowersox and Chamberlin, 1995	32.741	67.076
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	32.469	66.620
Unnamed		Mineralized silicified zone.	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	32.488	67.025
Officiallieu		Willief alized Silicilied zorie.	Abdullah and others, 1977:	32.460	07.025
Unnamed			Bowersox and Chamberlin, 1995	32.570	66.550
			Abdullah and others, 1977;		
Unnamed		Mineralized quartz vein.	Bowersox and Chamberlin, 1995	32.602	67.093
l lana and a		A disconding of accordance in	Abdullah and others, 1977;	22 (20	// 550
Unnamed		Mineralized quartz vein.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	32.638	66.552
Unnamed		Mineralization adjacent to fault.	Bowersox and Chamberlin, 1995	32.638	66.924
		,	Abdullah and others, 1977;		
Unnamed		Mineralized silicified zone.	Bowersox and Chamberlin, 1995	32.703	67.229
			Abdullah and others, 1977;		
Unnamed		Mineralized fault zone.	Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	32.723	67.023
Unnamed		Mineralized silicified zone.	Bowersox and Chamberlin, 1995	32.729	67.042
			Abdullah and others, 1977;		27.12.12
Unnamed		Mineralized quartz vein.	Bowersox and Chamberlin, 1995	32.766	67.054
			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995 Abdullah and others, 1977;	32.775	66.758
Unnamed			Bowersox and Chamberlin, 1995	32.236	66.429
Omamou			Abdullah and others, 1977;	02.200	00.127
Unnamed			Bowersox and Chamberlin, 1995	32.509	66.682
			Abdullah and others, 1977;		
Unnamed		Mineralized quartz veins.	Bowersox and Chamberlin, 1995	32.741	67.081
Unnamed			Abdullah and others, 1977; Bowersox and Chamberlin, 1995	32.720	66.769
Officialitied			Abdullah and others, 1977;	32.720	00.707
Unnamed			Bowersox and Chamberlin, 1995	32.511	66.678
			Abdullah and others, 1977;		
Unnamed		Mineralized fault zone.	Bowersox and Chamberlin, 1995	32.542	66.582
Unnamed		Minoralized fault zone and guartz us!	Abdullah and others, 1977; Bowersox and Chamberlin, 1995	22 414	64 007
Unnamed		Mineralized fault zone and quartz vein.	Abdullah and others, 1977;	32.614	66.927
Unnamed			Bowersox and Chamberlin, 1995	32.734	66.722
**			Abdullah and others, 1977;		
Unnamed			Bowersox and Chamberlin, 1995	32.735	66.918
			Abdullah and others, 1977;	00	
Unnamed		Mineralized quartz veinlets.	Bowersox and Chamberlin, 1995	32.766	66.837

Locality/Deposit Name	Deposit or District Name	Province	Latitude	Longitude	Commodity(s)	Type of Deposit	Status	Host Rock Age	Host Rock	Significant Minerals or Materials
Unnamed		Zabol	32-46-56N	67-03-03E	W	vein	Showing	Oligocene	granite	

Locality/Deposit Name	Deposit Size and (or) Grade	Comments	References		Decimal Longitude
		Mineralized quartz vein 15 m long and up to 3	Abdullah and others, 1977;		
Unnamed		m thick.	Bowersox and Chamberlin, 1995	32.782	67.051